Numerical Study of Transitional Rough Wall Boundary Layer

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Witold Elsner ◽  
Piotr Warzecha

This paper presents the verification of the boundary layer modeling approach, which relies on a γ-Reθt model proposed by Menter et al. (2006, “A Correlation-Based Transition Model using Local Variables—Part I: Model Formation,” J. Turbomach., 128(3), pp. 413–422). This model was extended by laminar-turbulent transition correlations proposed by Piotrowski et al. (2008, “Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation,” Proceedings of the ASME Turbo Expo, Paper No. GT2008-50796) as well as Stripf et al.'s (2009, “Extended Models for Transitional Rough Wall Boundary Layers with Heat Transfer—Part I: Model Formulation,” J. Turbomach., 131(3), 031016) correlations, which take into account the effects of surface roughness. To blend between the laminar and fully turbulent boundary layer over rough wall, the modified intermittency equation is used. To verify the model, a flat plate with zero and nonzero pressure gradient test cases as well as the high pressure turbine blade case were chosen. Furthermore, the model was applied for unsteady calculations of the turbine blade profile as well as the Lou and Hourmouziadis (2000, “Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions,” J. Turbomach., 122(4), pp. 634–643) flat plate test case, with an induced pressure profile typical for a suction side of highly-loaded turbine airfoil. The combined effect of roughness and wake passing were studied. The studies proved that the proposed modeling approach (ITMR hereinafter) appeared to be sufficiently precise and enabled for a qualitatively correct prediction of the boundary layer development for the tested simple flow configurations. The results of unsteady calculations indicated that the combined impact of wakes and the surface roughness could be beneficial for the efficiency of the blade rows, but mainly in the case of strong separation occurring on highly-loaded blade profiles. It was also demonstrated that the roughness hardly influences the location of wake induced transition, but has an impact on the flow in between the wakes.

Author(s):  
Witold Elsner ◽  
Piotr Warzecha

The paper presents the verification of boundary layer modeling approach, which relies on a γ-Reθt model proposed by Menter et al. [1]. This model was extended by laminar-turbulent transition correlations proposed by Piotrowski et al. [2] as well as Stripf et al. [3] correlations, which take into account the effects of surface roughness. To blend between the laminar and fully turbulent boundary layer over rough wall the modified intermittency equation is used. To verify the model a flat plate with zero and non-zero pressure gradients test cases as well as the high pressure turbine blade case were chosen. Further on, the model was applied for unsteady calculations of turbine blade profile as well as the Lou and Hourmouziadis [4] flat plate test case, with induced pressure profile typical for suction side of highly-loaded turbine airfoil. The combined effect of roughness and wake passing were studied. The studies proved that the proposed modeling approach (ITMR hereinafter) appeared to be sufficiently precise and enabled for a qualitatively correct prediction of the boundary layer development for the tested simple flow configurations. The results of unsteady calculations indicated that the combined impact of wakes and the surface roughness could be beneficial for the efficiency of the blade rows, but mainly in the case of strong separation occurring on highly-loaded blade profiles. It was also demonstrated that the roughness hardly influences the location of wake induced transition, but has an impact on the flow in between the wakes.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Author(s):  
Meinhard T. Schobeiri ◽  
Ali Nikparto

The paper numerically and experimentally investigates the behavior of the boundary layer development and heat transfer along the suction and pressure surfaces of a highly loaded turbine blade with separation. To evaluate and compare the predictive capability of different numerical methods, Reynolds Averaged Navier-Stokes based solvers (RANS), Unsteady Reynolds Averaged Navier Stokes equation (URANS) as well as Large Eddy Simulation (LES) are used. The results of each individual numerical method are compared with the measurements. For this purpose, extensive boundary layer and heat transfer measurements were performed in the unsteady boundary layer cascade facility of the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. Aerodynamics experiments include measuring the onset of the boundary, its transition, separation and re-attachment using miniature hot wire probes. Heat transfer measurements along the suction and pressure surfaces were conducted utilizing a specially designed heat transfer blade that was instrumented with liquid crystal coating. Comparisons of the experimental and numerical results detail differences in predictive capabilities of the RANS based solvers and LES.


Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

Rough wall turbulent boundary layers subjected to pressure gradient have engineering interest for many fluid machinery applications. A number of investigations have been made to understand surface roughness and pressure gradient effects on turbulent boundary layer characteristics, but separately. In this paper, turbulent boundary layers over a flat plate with surface roughness and favorable pressure gradient (FPG) are experimentally investigated. Boundary layers in different streamwise locations were measured using boundary layer type hot-wire anemometry. Rough wall zero pressure gradient (ZPG) turbulent boundary layers were also measured to compare the result from the investigation. The surface roughness was applied by attaching sandpapers on the flat plate. The magnitude of surface roughness is representative of land-based gas turbine compressor blade. Pressure gradient was adjusted using movable endwall of the test section. Results from the measurement show characteristics of the turbulent boundary layer growth affected by both surface roughness and favorable pressure gradient.


2009 ◽  
Vol 77 (2) ◽  
Author(s):  
R. Ahmad ◽  
K. Naeem ◽  
Waqar Ahmed Khan

This paper presents the classical approximation scheme to investigate the velocity profile associated with the Falkner–Skan boundary-layer problem. Solution of the boundary-layer equation is obtained for a model problem in which the flow field contains a substantial region of strongly reversed flow. The problem investigates the flow of a viscous liquid past a semi-infinite flat plate against an adverse pressure gradient. Optimized results for the dimensionless velocity profiles of reverse wedge flow are presented graphically for different values of wedge angle parameter β taken from 0≤β≤2.5. Weighted residual method (WRM) is used for determining the solution of nonlinear boundary-layer problem. Finally, for β=0 the results of WRM are compared with the results of homotopy perturbation method.


Sign in / Sign up

Export Citation Format

Share Document