scholarly journals Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Dahbia Benmouhoub ◽  
Amina Mataoui

The flow field and heat transfer of a plane impinging jet on a hot moving wall were investigated using one point closure turbulence model. Computations were carried out by means of a finite volume method. The evolutions of mean velocity components, vorticity, skin friction coefficient, Nusselt number and pressure coefficient are examined in this paper. Two parameters of this type of interaction are considered for a given impinging distance of 8 times the nozzle thickness (H/e = 8): the jet-surface velocity ratio and the jet exit Reynolds number. The flow field structure at a given surface-to-jet velocity ratio is practically independent to the jet exit Reynolds number. A slight modification of the flow field is observed for weak surface-to-jet velocity ratios while the jet is strongly driven for higher velocity ratio. The present results satisfactorily compare to the experimental data available in the literature for Rsj ≤ 1.The purpose of this paper is to investigate this phenomenon for higher Rsj values (0 ≤ Rsj ≤ 4). It follows that the variation of the mean skin friction and the Nusselt number can be correlated according to the surface-to-jet velocity ratios and the Reynolds numbers.

2014 ◽  
Vol 18 (4) ◽  
pp. 1259-1271 ◽  
Author(s):  
Dahbia Benmouhoub ◽  
Amina Mataoui

This study examines the performance of one point closure turbulence models in predicting of heat and momentum transfer of impinging flows. The scope of this paper is limited to impinging jet on a moving wall and heat transfer. The impinging distance is fixed to 8 thickness of the nozzle (8e) for this study. Two parameters are considered: the jet exit Reynolds number (10000?Re?25000) and the jet-surface velocity ratio (0?Rsj?4). the flow field structure at a given surface-to-jet velocity ratio is independent of the jet Reynolds number, a slight modification of the flow field is observed for low surface-to-jet velocity ratio (Rsj<0.25) whereas at higher ratios Rsj>0.25, the flow field is significantly modified. Good agreement with experimental results is obtained for surface-to-jet velocity ratio 0?Rsj?2. the purpose of this paper is to consider the case of higher of surface-to-jet velocity Rsj>2. A further study of heat transfer is achieved and shows that the stagnation points the local heat transfer coefficient have a maximum value. The local Nusselt number at the impinging region tends to decrease significantly when Rsj?1.5. The evolution of average Nusselt number is correlated according to the surface-to-jet velocity ratios for each Reynolds number.


2016 ◽  
Vol 20 (5) ◽  
pp. 1485-1498
Author(s):  
Farida Iachachene ◽  
Amina Mataoui ◽  
Yacine Halouane

Turbulent heat transfer between a confined jet flowing in a hot rectangular cavity is studied numerically by finite volume method using the k-w SST one point closure turbulence model. The location of the jet inside the cavity is chosen so that the flow is in the non-oscillation regime. The flow structure is described for different jet-to-bottom-wall distances. A parametrical study was conducted to identify the influence of the jet exit location and the Reynolds number on the heat transfer coefficient. The parameters of this study are: the jet exit Reynolds number (Re, 1560< Re <33333), the temperature difference between the cavity heated wall and the jet exit (DT=60?C) and the jet location inside the cavity (Lf, 2? Lf? 10 and Lh 2.5<Lh?10). The Nusselt number increased and attained its maximum value at the stagnation points and then decreased. The flow structure is found in good agreement with the available experimental data. The maximum local heat transfer between the cavity walls and the flow occurs at the potential core end. The ratio between the stagnation point Nusselt numbers of the cavity bottom (NuB0) to the maximum Nusselt number on the lateral cavity wall (NuLmax) decreased with the Reynolds number for all considered impinging distances. For a given lateral confinement, the stagnation Nusselt number of the asymmetrical interaction Lh?10 is almost equal to that of the symmetrical interaction Lh=10.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Yacine Halouane ◽  
Amina Mataoui ◽  
Farida Iachachene

The turbulent heat transfer by a confined jet flowing inside a hot cylindrical cavity is investigated numerically in this paper. This configuration is found in several engineering applications such as air conditioning and the ventilation of mines, deadlock, or corridors. The parameters investigated in this work are the Reynolds number (Re, 20,000 ≤ Re ≤ 50,000) and the normalized distance Lf between jet exit and the cavity bottom (Lf, 2 ≤ Lf  ≤ 12). The numerical predictions are performed by finite volume method using the second order one-point closure turbulence model (RSM). The Nusselt number increases and attains maximum values at stagnation points, after it decreases. For an experimental test case available in the literature Lf = 8, the numerical predictions are in good agreement. Processes of heat transfer are analyzed from the flow behavior and the underlying mechanisms. The maximum local heat transfer between the cavity walls and the flow occurs at Lf = 6 corresponding to the length of the potential core. Nusselt number at the stagnation point is correlated versus Reynolds number Re and impinging distance Lf; [Nu0=f(Re,Lf)].


Author(s):  
Himadri Chattopadhyay ◽  
Ali Cemal Benim

In the present paper, turbulent heat transfer characteristics of slot jets impinging on a moving surface up to a Reynolds number of 50,000 have been studied. The turbulent flow field was resolved using the realizable k-ε model due to Shi et al. (1995) after rigorously establishing the adequacy of the model by comparison with large-eddy simulation data. A periodic element from a jet-bank configuration was chosen in the direction of the surface movement. The distribution of heat transfer on impinging surface is found to be significantly affected by the plate motion. However, the mean velocity distribution along vertical direction in the stagnation region is not affected by the plate motion. With increasing surface motion, the initial symmetric distribution changes to an inclined-S type pattern in the direction of the surface movement up to a certain level of surface velocity and the average heat transfer reduces. When the surface motion crosses this level, the net heat transfer starts increasing. The amount of heat transfer was found to be linked with the level of turbulent kinetic energy near the impingement region. The surface velocity at which the heat transfer reaches the value corresponding to the fixed surface value increases with increasing Reynolds number.


1989 ◽  
Vol 111 (1) ◽  
pp. 51-58 ◽  
Author(s):  
S. C. Lau ◽  
J. C. Han ◽  
Y. S. Kim

Experiments were conducted to study the effects of lateral flow ejection on the overall heat transfer and pressure drops for turbulent flow through pin fin channels. The two test sections of the investigation were rectangular channels with staggered arrays of six and eight streamwise rows of pins, respectively. The pin length-to-diameter ratio was one and both the streamwise and spanwise pin spacings were 2.5 times the pin diameter. Heat transfer and friction data were obtained for various ejection exit geometries, for ejection ratios between 0 and 1, and for Reynolds numbers between 6000 and 60,000. The results of the study show that, for any given ejection ratio, the overall Nusselt number increases with increasing Reynolds number. However, the overall Nusselt number is reduced by as much as 25 percent as the ejection ratio is increased from 0 to 1 over the range of Reynolds number studied. The Nu–Re–ε relationship, which is insensitive to varying the ejection exit geometry, can be correlated by the equation (Nu/Nu0) = (Nu1/Nu0)ε, where Nu0 = c0Rem and Nu1 = c1Ren are the overall Nusselt numbers in the 0 and 100 percent lateral flow ejection cases, respectively. The results also show that the overall friction factor is independent of the flow Reynolds number over the range of Reynolds number studied. However, the friction factor is strongly dependent on the ejection ratio as well as the geometries of the straight flow exit and lateral ejection flow exit.


2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Himadri Chattopadhyay ◽  
Ali Cemal Benim

In the present paper, turbulent heat transfer characteristics of submerged slot jets impinging on a moving surface at a constant temperature up to a Reynolds number of 50,000 have been studied. The turbulent flow field was resolved using the realizable k-ɛ model due to Shi et al. [1995, “A New k-ɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation,” Comput. Fluids, 24, pp. 227–238] after rigorously establishing the adequacy of the model by comparison with large-eddy simulation data. A periodic element from a jet-bank configuration was chosen in the direction of the surface movement. The distribution of heat transfer on impinging surface is found to be significantly affected by the plate motion. However, the mean velocity distribution along vertical direction in the stagnation region is not affected by the plate motion. With increasing surface motion, the initial symmetric distribution changes to an inclined-S type pattern in the direction of the surface movement up to a certain level of surface velocity and the average heat transfer reduces. When the surface motion crosses this level, the net heat transfer starts increasing. The amount of heat transfer was found to be linked with the level of turbulent kinetic energy close to the impingement surface. The surface velocity at which the heat transfer reaches the value corresponding to the fixed surface value increases with increasing Reynolds number.


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 341-356 ◽  
Author(s):  
Mohamed Aksouh ◽  
Amina Mataoui ◽  
Nassim Seghouani ◽  
Zoubida Haddad

This purpose is about a three dimensional study of natural convection within cavities. This problem is receiving more and more research interest due to its practical applications in the engineering and the astrophysical research The turbulent natural convection of air in an enclosed tall cavity with high aspect ratio (AR=H/W=28.6) is examined numerically. Two cases of differential temperature have been considered between the lateral cavity plates corresponding, respectively, to the low and high Rayleigh numbers: Ra=8.6?105 and Ra=1.43?106 [1]. For these two cases, the flow is characterized by a turbulent low Reynolds number. This led us to improve the flow characteristics using two one point closure low-Reynolds number turbulence models: RNG k-e model and SST k-w model, derived from standard k-e model and standard k-w model, respectively. Both turbulence models have provided an excellent agreement with the experimental data. In order to choose the best model, the average Nusselt number is compared to the experiment and other numerical results. The vorticity components surfaces confirm that the flow can be considered two-dimensional with stretched vortex in the cavity core. Finally, a correlation between Nusselt number and Rayleigh number is obtained to predict the heat transfer characteristics.


2015 ◽  
Vol 19 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Yacine Halouane ◽  
Amina Mataoui ◽  
Farida Iachachene

Convective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2x104 to 105and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu=f(Lf,Re).


2021 ◽  
Vol 321 ◽  
pp. 04014
Author(s):  
Hussein Togun

In this paper, 3D Simulation of turbulent Fe3O4/Nanofluid annular flow and heat transfer in sudden expansion are presented. k-ε turbulence standard model and FVM are applied with Reynolds number different from 20000 to 50000, enlargement ratio (ER) varied 1.25, 1.67, and 2, , and volume concentration of Fe3O4/Nanofluid ranging from 0 to 2% at constant heat flux of 4000 W/m2. The main significant effect on surface Nusselt number found by increases in volume concentration of Fe3O4/Nanofluid for all cases because of nanoparticles heat transport in normal fluid as produced increases in convection heat transfer. Also the results showed that suddenly increment in Nusselt number happened after the abrupt enlargement and reach to maximum value then reduction to the exit passage flow due to recirculation flow as created. Moreover the size of recirculation region enlarged with the rise in enlargement ratio and Reynolds number. Increase of volume Fe3O4/nanofluid enhances the Nusselt number due to nanoparticles heat transport in base fluid which raises the convection heat transfer. Increase of Reynolds number was observed with increased Nusselt number and maximum thermal performance was found with enlargement ratio of (ER=2) and 2% of volume concentration of Fe3O4/nanofluid. Further increases in Reynolds number and enlargement ratio found lead to reductions in static pressure.


Author(s):  
Naoki Osawa ◽  
Yoshinobu Yamamoto ◽  
Tomoaki Kunugi

In this study, validations of Reynolds Averaged Navier-Stokes Simulation (RANS) based on Kenjeres & Hanjalic MHD turbulence model (Int. J. Heat & Fluid Flow, 21, 2000) coupled with the low-Reynolds number k-epsilon model have been conducted with the usage of Direct Numerical Simulation (DNS) database. DNS database of turbulent channel flow imposed wall-normal magnetic field on, are established in condition of bulk Reynolds number 40000, Hartmann number 24, and Prandtl number 5. As the results, the Nagano & Shimada model (Trans. JSME series B. 59, 1993) coupled with Kenjeres & Hanjalic MHD turbulence model has the better availability compared with Myong & Kasagi model (Int. Fluid Eng, 109, 1990) in estimation of the heat transfer degradation in MHD turbulent heat transfer.


Sign in / Sign up

Export Citation Format

Share Document