Computer-Aided Engineering Approach for Parametric Investigation of Locked Plating Systems Design

2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Joshua C. Arnone ◽  
A. Sherif El-Gizawy ◽  
Brett D. Crist ◽  
Gregory J. Della Rocca ◽  
Carol V. Ward

The present paper presents an integrated computer-aided engineering (CAE) approach combining digital imaging, solid modeling, robust design methodology, and finite element analysis in order to conduct a parametric investigation of the design of locked plating systems. The present study allows for understanding the contributions of different design parameters on the biomechanics and reliability of these systems. Furthermore, the present approach will lead to exploration of optimum design parameters that will result in robust system performance. Three-dimensional surface models of cortical and cancellous femoral bone were derived via digital computed tomography (CT) image processing techniques and a medical imaging analysis program. A nine orthogonal array matrix simulation (L9) was conducted using finite element methods to study the effects of the various design parameters on plate performance. The introduced technique was demonstrated and experimentally verified on a case study using a Smith & Nephew PERI- LOC distal femur locking plate and a Synthes Less Invasive Stabilization System (LISS).

Author(s):  
Joshua C. Arnone ◽  
A. Sherif El-Gizawy ◽  
Brett D. Crist ◽  
Gregory J. Della Rocca ◽  
Carol V. Ward

Locked plating systems have emerged in recent years as effective devices for treating and stabilizing femoral fractures. Nevertheless, clinical failures due to plate yielding and fracture have been observed — particularly with distal femoral plates. The majority of failures are attributed to improper placement, fixation techniques, or plate selection, and to premature weight-bearing by the patient. While the mechanical function of plating systems is well-understood, the optimum design parameters that lead to efficient stability and fracture healing, such as plate geometry, material properties, and fixation techniques (e.g. screw configuration and the use of hole inserts), are unknown. The present paper presents an integrated computer-aided engineering (CAE) approach combining digital imaging, solid modeling, robust design methodology, and finite element analysis in order to conduct a parametric investigation of the design of locked plating systems. The present study allows for understanding the contributions of different design parameters on the biomechanics and reliability of these systems. Furthermore, the present approach will lead to exploration of optimum design parameters that will result in robust system performance. Three-dimensional surface models of cortical and cancellous femoral bone were derived via digital CT image processing techniques and a medical imaging analysis program. A nine orthogonal array matrix simulation (L9) was conducted using finite element methods to study the effects of the various design parameters on plate performance. The technique was demonstrated on a case study using a Smith & Nephew PERI-LOC distal femur locking plate where the plate thickness and material, the use of screw hole inserts, and the use of an oblique screw angled distally and medially were the design parameters. After creating a distal fracture with bone loss and stabilizing the femur with the plating system, the impact force due to walking was simulated on each of the nine fracture models. Results showed that increasing the plate’s thickness, using titanium alloy for fabrication, and using screw hole inserts in proximity to the fracture site will maximize the overall factor of safety.


2016 ◽  
Vol 5 (1) ◽  
pp. 31-38
Author(s):  
Arpan Gupta ◽  
O.P. Singh

Finite element modeling (FEM) plays a significant role in the design of various devices in the engineering field of automotive, aerospace, defense etc. In the recent past, FEM is assisting engineers and healthcare professional in analyzing and designing various medical devices with advanced functionality. Computer aided engineering can predict failure circumstances, which can be avoided for the health and well-being of people. In this research work, computer aided engineering analysis of human elbow is presented beginning with modeling of human elbow from medical image data, and predicting the stresses in elbow during carrying heavy loads. The analysis is performed by using finite element method. The results predict the stress level and displacement in the human bone during heavy weight lifting. Thus, it can be used to predict the safe load that a particular person can carry without bone injury. The present analysis focused on a particular model of bone for a particular individual. However, safe load can be determined for various age groups by generating more detailed model including tendons, ligaments and by using patient specific material properties.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


2018 ◽  
Vol 207 ◽  
pp. 02008
Author(s):  
Chung-Ming Tan ◽  
Mau-Yiu Chang

This research is to develop a methodology to optimize the performance of fenders using finite element analysis. The design of fender geometry is done using software SolidWorks. Simulation is one of several add-in tools in SolidWorks. The finite element analysis of the performance of the fender designed is then evaluated by simulation tool in SolidWorks. This study also shows the potential applications of computer aided engineering and its benefits in verifying and reinventing various fenders design.


Author(s):  
Andrew R. Thoreson ◽  
James J. Stone ◽  
Kurtis L. Langner ◽  
Jay Norton ◽  
Bor Z. Jang

Numerous techniques for fabricating tissue engineering scaffolds have been proposed by researchers covering many disciplines. While literature regarding properties and efficacy of scaffolds having a single set of design parameters is abundant, characterization studies of scaffold structures encompassing a wide range of design parameters are limited. A Precision Extrusion Deposition (PED) system was developed for fabricating poly-ε-caprolactone (PCL) tissue scaffolds having interconnected pores suitable for cartilage regeneration. Scaffold structures fabricated with three-dimensional printing methods are periodic and are readily modeled using Computer Aided Design (CAD) software. Design parameters of periodic scaffold architectures were identified and incorporated into CAD models with design parameters over the practical processing range represented. Solid models were imported into a finite element model simulating compression loading. Model deformation results were used to identify apparent modulus of elasticity of the structure. PCL scaffold specimens with design parameters within the modeled range were fabricated and subjected to compression testing to physically characterize scaffold modulus. Results of physical testing and finite element models were compared to determine effectiveness of the method.


2017 ◽  
pp. 1044-1052
Author(s):  
Arpan Gupta ◽  
O.P. Singh

Finite element modeling (FEM) plays a significant role in the design of various devices in the engineering field of automotive, aerospace, defense etc. In the recent past, FEM is assisting engineers and healthcare professional in analyzing and designing various medical devices with advanced functionality. Computer aided engineering can predict failure circumstances, which can be avoided for the health and well-being of people. In this research work, computer aided engineering analysis of human elbow is presented beginning with modeling of human elbow from medical image data, and predicting the stresses in elbow during carrying heavy loads. The analysis is performed by using finite element method. The results predict the stress level and displacement in the human bone during heavy weight lifting. Thus, it can be used to predict the safe load that a particular person can carry without bone injury. The present analysis focused on a particular model of bone for a particular individual. However, safe load can be determined for various age groups by generating more detailed model including tendons, ligaments and by using patient specific material properties.


2013 ◽  
Vol 275-277 ◽  
pp. 2241-2247 ◽  
Author(s):  
Arbtip Dheeravongkit ◽  
Narongsak Tirasuntarakul

Ball swaging is a general method in head stack assembly process to permanently attach Head Gimbal Assemblies (HGA) on the actuator arm. In this process, the swage ball is guided by a pin through the inner base plate’s hole in order to deform the base plate to tightly attach to the actuator arm. However, the loosing problem can still be found quite often in the current swaging process. This research focuses on ball sizes and the number of balls used which currently no theoretical guidance in choosing the both parameters. Besides, the best combination of the both parameters can give the best swaging performance. The three-dimensional finite element model is created and analyzed to estimate the swaging performance according to the variation of both parameters by using the tightening torque and the fixing distance of base plate to determine the quality of the ball swaging process. The results from finite element method are treated as the sampling points which are used to create the interpolation in order to increase the considered cases to cover all happening cases from both parameters. After that, a searching algorithm is implemented to determine the most suitable ball size and the number of ball used for the process. By using the finite element analysis together with the interpolation and a searching algorithm, the optimal design parameters for a complex problem with multiple conditions of consideration can be easily found.


Author(s):  
Floyd Linayao ◽  
Raymond K. Yee

Traditionally speaking, prototype tires are designed, and then tested on an experimental basis to evaluate performance. Using finite element analysis instead allows tire design parameters to be modified at will and underperforming architectures to be ruled out. This paper characterizes the dynamic response of a tubeless pneumatic vehicle tire as it is exposed to sudden impact and determines conditions under which failure would occur. Three cases were studied using a 175SR14 passenger tire, since passenger tires are most commonly used and impacts are more substantial on smaller tires. ABAQUS finite element program was used to perform nonlinear transient dynamic three-dimensional finite element analyses for three commonly tire encountered conditions. The first case, direct curb impact, determined that a safe inflation pressure range for tire velocities exists between 10 and 60 km per hour (kph). The second case, angled curb impact, found a smaller range of 10 to 40kph. The third case, impact with a pothole, found that at low inflation pressures, less stress is produced at higher velocities; increasing inflation pressure results in a transition point, causing larger stresses to be produced at higher velocities. From these analyses, several conclusions are drawn: inflation pressures below 100KPa do not produce a useful relationship between tire velocity and stress; thicker sidewalls help shield the tire from impact failure; and it is better for the tire to accelerate past a pothole in the 30 to 70kph range.


Sign in / Sign up

Export Citation Format

Share Document