Continuous Galerkin Petrov Time Discretization Scheme for the Solutions of the Chen System

Author(s):  
S. Hussain ◽  
Z. Salleh

In this paper, the continuous Galerkin Petrov time discretization (cGP) scheme is applied to the Chen system, which is a three-dimensional system of ordinary differential equations (ODEs) with quadratic nonlinearities. In particular, we implement and analyze numerically the higher order cGP(2)-method which is found to be of fourth order at the discrete time points. A numerical comparison with classical fourth-order Runge–Kutta (RK4) is given for the presented problem. We look at the accuracy of the cGP(2) as the Chen system changes from a nonchaotic system to a chaotic one. It is shown that the cGP(2) method gains accurate results at larger time step sizes for both cases.

2013 ◽  
Vol 631-632 ◽  
pp. 1436-1440
Author(s):  
Ud Din Khan Shahab ◽  
Yong Lu Shu ◽  
Ud Din Khan Salah

In this study, the Adomian's decomposition method (ADM) is applied to the STF system. This method has been tested on the STF system which is a three-dimensional system of ODE with quadratic nonlinearities. A computer based Matlab program has been developed in order to solve the STF system. Chaotic and non-chaotic behavior of the system has been analyzed graphically and finally a comparison as well as accuracy between two systems has been made in two-step sizes with detail.


1996 ◽  
Vol 74 (1-2) ◽  
pp. 4-9
Author(s):  
M. R. M. Witwit

The energy levels of a three-dimensional system are calculated for the rational potentials,[Formula: see text]using the inner-product technique over a wide range of values of the perturbation parameters (λ, g) and for various eigenstates. The numerical results for some special cases agree with those of previous workers where available.


1976 ◽  
Vol 15 (2) ◽  
pp. 197-222
Author(s):  
R. J. Hartman

This paper uses the general solution of the linearized initial-value problem for an unbounded, exponentially-stratified, perfectly-conducting Couette flow in the presence of a uniform magnetic field to study the development of localized wave-type perturbations to the basic flow. The two-dimensional problem is shown to be stable for all hydrodynamic Richardson numbers JH, positive and negative, and wave packets in this flow are shown to approach, asymptotically, a level in the fluid (the ‘isolation level’) which is a smooth, continuous, function of JH that is well defined for JH < 0 as well as JH > 0. This system exhibits a rich complement of wave phenomena and a variety of mechanisms for the transport of mean flow kinetic and potential energy, via linear wave processes, between widely-separated regions of fluid; this in addition to the usual mechanisms for the absorption of the initial wave energy itself. The appropriate three-dimensional system is discussed, and the role of nonlinearities on the development of localized disturbances is considered.


Author(s):  
Malena I. Español ◽  
Dmitry Golovaty ◽  
J. Patrick Wilber

In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.


Sign in / Sign up

Export Citation Format

Share Document