Film Thickness and Rolling Resistance in Starved Elastohydrodynamic Lubrication of Point Contacts With Reflow

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Takashi Nogi

Elastohydrodynamic lubrication (EHL) film thickness and rolling resistance play a critical role in determining friction, wear, life, and other tribological characteristics of rolling bearings. Although film thickness formulas are widely used and experimentally verified, accurate prediction of the film thickness is still difficult under starved conditions. This paper presents a numerical study of starved EHL point contacts using a nonuniform inlet film thickness obtained from a modified Coyne–Elrod boundary condition. An experimental verification of the numerical results is also presented. Based on the results of a parametric study, inlet distance formulas are obtained as a function of the initial film thickness, the fully flooded central film thickness, and the capillary number. By using the inlet distance formulas and the Hamrock–Dowson formulas, the central film thickness, the minimum film thickness, and the viscous rolling resistance can be calculated.

Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.


2021 ◽  
pp. 1-21
Author(s):  
Wassim Habchi

Abstract This work presents a comprehensive numerical study of thermal elastohydrodynamic lubrication performance in axially crowned rollers, based on a full-system finite element approach. Axial crowning has always been introduced to finite line contacts, as a mean for improving film thickness. Its influence on friction has often been overlooked though. The current work reveals that axial crowning has a negative influence on friction, increasing it significantly with respect to the reference case of straight rollers. It is shown that, with increased crowning height (or reduced crowning radius), minimum film thickness is increased, but so is friction. Therefore, film thickness enhancement comes at the expense of a deterioration in friction. Besides, achieving sufficient enhancements in minimum film thickness would require using relatively low crowning radii, which would lead to a substantial increase in friction. The frictional increase is traced back to an overall increase in contact pressures and effective contact area within the lubricating conjunction. It is also shown that, when film thickness is the most critical design parameter, the best compromise between enhanced film thickness and deteriorated friction would be to combine axial crowning with roller-end profiling. However, when friction is the most critical design parameter, a simple roller-end profiling would offer the best compromise.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Takashi Nogi ◽  
Hiroshi Shiomi ◽  
Noriko Matsuoka

Under repeated overrollings, the elastohydrodynamic lubrication (EHL) film thickness can be much less than the fully flooded value due to the ejection of the lubricant from the track. The ejection of the lubricant is caused by the pressure flow in the inlet, and under conditions of negligible reflow, the reduction rate is predicted by the numerical analysis with a uniform inlet film thickness. However, the degree of starvation is determined by the balance of the ejection and reflow. In the previous papers for circular contacts, the reflow is taken into account using a nonuniform inlet film thickness obtained based on the Coyne–Elrod boundary condition. In this paper, the model for circular contacts is extended to elliptical contacts, which are of more practical importance in rolling bearings. The model is verified for the inlet distance and the film thickness using a roller on disk optical test device. Numerical results are fitted to an inlet distance formula, which is a function of the initial film thickness, the fully flooded central film thickness, the capillary number, and the ellipticity ratio. The inlet distance formula can be applied to the Hamrock–Dowson formulas for the starved film thickness.


Author(s):  
X-L Liu ◽  
P Yang ◽  
P-R Yang

In practice, the tilting roller occurs widely in rolling bearings. In order to investigate the lubricating mechanism of tilting rollers in rolling bearings, a contact between a tilting cylindrical roller and an infinite plane is assumed in the present paper. Using the multi-grid method, a numerical solution has been obtained for the isothermal elastohydrodynamic lubrication of the contact. The film thickness and pressure with different tilt angles have been given. Results show that the property of the tilting roller’s lubrication is different from that of the parallel roller contact investigated in the past, and asymmetry is common both for the film thickness and the oil pressure under tilting conditions. Moreover, the larger the tilt angle, the smaller the minimum film thickness, and the more easily the local wear occurs in bearings. The effects of the maximum Hertzian pressure, velocity parameter, and length and end profile radius of the roller on the lubricating performance of the contact have been discussed. The conclusion can be made that better lubrication of tilting roller contact needs light load, high velocity parameter, short length, and larger end profile radius of the roller. Comparisons between the starved and fully flooded lubrication in the tilting roller contact have been given, and it has been found that starvation status can worsen the lubrication and reduce the life of roller bearings.


1991 ◽  
Vol 113 (4) ◽  
pp. 703-711 ◽  
Author(s):  
Kyung Hoon Kim ◽  
Farshid Sadeghi

A numerical solution to the problem of isothermal non-Newtonian elastohydrodynamic lubrication of rolling/sliding point contacts has been obtained. The multigrid technique is used to solve the simultaneous system of two-dimensional modified Reynolds and elasticity equations. The effects of various loads, speeds, and slide to roll ratios on the pressure distribution, film thickness, and friction force have been investigated. Results for the dimensionless load W = 4.6 × 10−6 and 1.1 × 10−6, and the dimensionless velocity U = 3 × 10−10 and 3 × 10−11 are presented. The results indicate that slide to roll ratio has negligible effect on the minimum film thickness, however, it significantly reduces the pressure spike.


1977 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
B. J. Hamrock ◽  
D. Dowson

Utilizing the theory and numerical procedure developed by the authors in an earlier publication the influence of lubricant starvation on minimum film thickness was investigated. This study of lubricant starvation was performed simply by moving the inlet boundary closer to the contact center. From the results it was found that for the range of conditions considered the value of dimensionless inlet distance at the boundary between fully flooded and starved conditions (m*) can be expressed simply as m*=1+3.06Rxb2Hc,F0.58 or m*=1+3.34Rxb2Hmin,F0.56 that is, for a dimensionless inlet distance (m) less than m*, starvation occurs, and for m ≥ m*, a fully flooded condition exists. Furthermore, it has been possible to express the central and minimum film thickness for a starved condition as Hc,S=Hc,Fm−1m*−10.29Hmin,S=Hmin,Fm−1m*−10.25 Contour plots of the pressure and film thickness in and around the contact are shown for the fully flooded and starved lubricant condition. From these contour plots it was observed that the pressure spike becomes suppressed and the film thickness decreases substantially as starvation increases.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


Sign in / Sign up

Export Citation Format

Share Document