The Elastohydrodynamic Lubrication of Elliptical Point Contacts Operating in the Isoviscous Region

Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.

Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


Author(s):  
C J Hooke

Most engineering point contacts operate in, or close to, the elastic piezoviscous regime. A general interpolation procedure is presented by which the minimum film thickness in any such contact may be estimated. This procedure matches all existing numerical and experimental results with high accuracy. Design charts are provided and these enable the minimum film thickness to be read directly and also allow the effect of changes in contact geometry and operating conditions to be assessed.


Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Dong Zhu

This study investigates the influences of coating material properties and coating thickness on lubricant film thickness based on a point-contact isothermal EHL model developed recently by the authors. The results present the trend of minimum film thickness variation as a function of coating thickness and elastic modulus under a wide range of working conditions. Numerical results indicates that the increase in minimum film thickness, Imax, and the corresponding optimal dimensionless coating thickness, H2, can be expressed in the following formulas: Imax=0.766M0.0248R20.0296L0.1379exp(−0.0245ln2L)H2=0.049M0.4557R2−0.1722L0.7611exp(−0.0504ln2M−0.0921ln2L) These formulas can be used to estimate the effect of a coating on EHL film thickness.


2006 ◽  
Vol 128 (3) ◽  
pp. 641-653 ◽  
Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Wenzhong Wang ◽  
Yuanzhong Hu ◽  
Dong Zhu

This paper investigates the effects of differential scheme and mesh density on elastohydrodynamic lubrication (EHL) film thickness based on a full numerical solution with a semi-system approach. The solution variation with different schemes and mesh sizes is revealed based on a set of numerical cases in a wide range of central film thickness from several hundred nanometers down to a few nanometers. It is observed that when the film is thick, the effects of differential schemes and mesh density are not significant. However, if the film becomes ultra-thin, e.g., below 10–20 nanometers, the influence of mesh density and differential schemes becomes more significant, and a proper dense mesh and differential scheme may be highly desirable. The present study also indicates that the solutions from the 1st-order backward scheme give the largest film thickness among all the solutions from different schemes at the same mesh size.


Author(s):  
R J Chittenden ◽  
D Dowson ◽  
C M Taylor

The existence of a coherent film of lubricant between highly loaded machine elements has been recognized for many years. Over this period of time measurements of film thickness have gone hand in hand with theoretical analyses in the field now known as elastohydrodynamic lubrication. The experimental techniques of capacitance, electrical resistance and X-ray measurement have been supplemented by the use of optical interferometry while the analytical expressions obtained with the use of elegant simplifications have been superseded by those developed from extensive and comprehensive computational procedures. These developments in experimental techniques have yielded a substantial number of measurements of both minimum and central film thickness. Likewise, the advent of the digital computer has allowed the derivation of a large number of solutions to the problem of elastohydrodynamic lubrication of concentrated contacts. All these results, covering a wide range of geometrical conditions, are to be found in the literature, yet little attempt appears to have been made to assemble a representative set of experimental data to permit a detailed evaluation of the theoretical formulae for elliptical contacts. The second part of this paper therefore considers the correlation between a number of experimental studies covering a wide range of operating conditions and geometries, and the predictions of recent elastohydrodynamic theory. Some of the important aspects of each set of experimental results are then considered and examples are provided which illustrate the following points: 1. Good estimates of lubricant film thickness may be obtained from the theoretical expressions recently derived, even when the dimensionless parameters involved are outside the ranges considered in the derivation of the formulae. 2. The discrepancies which exist between theoretical predictions and some of the measured film thicknesses are nevertheless quite large, even when the dimensionless parameters are within their usual limits. On the whole there is good agreement between experiment and theory, while the general trend of the results indicates that theoretical predictions may underestimate the minimum film thickness by about 10 per cent and the central film thickness by about 25 per cent. This measure of agreement is quite remarkable when the extreme difficulty of interpreting the magnitudes of effective and very thin mean film thicknesses between machined components in various forms of experimental equipment is considered.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


2000 ◽  
Vol 122 (4) ◽  
pp. 689-696 ◽  
Author(s):  
I. Krˇupka ◽  
M. Hartl ◽  
R. Polisˇcˇuk ◽  
J. Cˇerma´k ◽  
M. Lisˇka

Colorimetric interferomentry has been applied to the study of EHD lubrication of point contacts under pure rolling conditions to obtain lubricant film shapes with high accuracy and resolution. An RGB CCD camera together with an extensive image processing software has enabled real time evaluation of chromatic interferograms. The classical numerical isothermal solution of EHD lubrication of point contacts has been used for the comparison with three-dimensional representations of film thickness distributions obtained from experiments. A good agreement was found between experimental and numerical EHD film shapes by comparing lubricant film profiles and positions of minimum film thickness. Both experimental results and numerical solution confirm the ratio between central and minimum film thickness to change significantly with operating conditions. [S0742-4787(00)00404-5]


Author(s):  
D Ashman

This paper gives details of a combined theoretical and experimental investigation of a plain journal bearing under heavily loaded conditions together with a metrological study of the bearing geometry. It was found that under high loading conditions a simplified analytical expression relating the Sommerfeld number to the non-dimensional minimum film thickness, using a hydrodynamic solution of the isoviscous form of the Reynolds equation, could be developed. An alternative theoretical solution based on elastohydrodynamic lubrication was also considered. In addition, experimental work determined a variety of operating conditions that produced metal-to-metal contact. These operating conditions were then compared with the theoretical minimum film thickness calculations and bearing manufacturing data. This process was used to determine combined failure criteria based on operating conditions and machining capability.


1991 ◽  
Vol 113 (3) ◽  
pp. 590-597 ◽  
Author(s):  
R. S. Zhou ◽  
M. R. Hoeprich

An analytic tapered roller bearing torque model is presented along with laboratory test data. Initial results of this proposed model are favorable. An accurate general purpose torque prediction tool could be obtained by extending the concepts presented in conjunction with a more comprehensive analysis of actual bearing operating conditions. By using EHL (Elastohydrodynamic Lubrication) theory and micro-macro contact analysis, the bearing torque can be determined by predicting each torque component for each roller due to raceway rolling, raceway moments due to EHL pressure distribution, and frictional force of rib-roller end contact. The roughness effect of contact surfaces, effect of EHL film thickness parameter (the ratio of film thickness to composite surface roughness), and thermal EHL effects are also included. A bearing torque test rig, which can measure the torque of cup race, cone race, and rib separately, was built and used to provide test data. Good agreement between the experimentally measured bearing torques and the predictions of the new torque model has been obtained. This torque model will provide a greater fundamental understanding and is more versatile over a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document