Influence of a Magnetic Obstacle on Forced Convection in a Three-Dimensional Duct With a Circular Cylinder

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang ◽  
Yin Zhang ◽  
Hongyan Wang

The predictions of flow structure, vortex shedding, and drag force around a circular cylinder are promoted by both academic interest and a wide range of practical situations. To control the flow around a circular cylinder, a magnetic obstacle is set upstream of the circular cylinder in this study for active controlling the separated flow behind bluff obstacle. Moreover, the changing of position, size, and intensity of magnetic obstacle is easy. The governing parameters are the magnetic obstacle width (d/D = 0.0333, 0.1, and 0.333) selected on cylinder diameter, D, and position (L/D) ranging from 2 to 11.667 at fixed Reynolds number Rel (based on the half-height of the duct) of 300 and the relative magnetic effect given by the Hartmann number Ha of 52. Results are presented in terms of instantaneous contours of vorticity, streamlines, drag coefficient, Strouhal number, pressure drop penalty, and local and average Nusselt numbers for various magnetic obstacle widths and positions. The computed results show that there are two flow patterns, one with vortex shedding from the magnetic obstacle and one without vortex shedding. The optimum conditions for drag reduction are L/D = 2 and d/D = 0.0333–0.333, and under these conditions, the pressure drop penalty is acceptable. However, the maximum value of the mean Nusselt number of the downstream cylinder is about 93% of that for a single cylinder.

1976 ◽  
Vol 78 (3) ◽  
pp. 561-576 ◽  
Author(s):  
A. Richter ◽  
E. Naudascher

The fluctuating lift and drag acting on a long, rigidly supported circular cylinder placed symmetrically in a narrow rectangular duct were investigated for various blockage percentages over a wide range of Reynolds numbers around the critical value. The data obtained permit a full assessment of the effect of confinement on the mean-drag coefficient, the root-mean-square values of both the drag and the lift fluctuations, the Strouhal number of the dominant vortex shedding, and the Reynolds number marking transition from laminar to turbulent flow separation. Besides experimental information on a subject on which little is known so far, the paper provides a basis for the deduction of better correction procedures concerning the effects of blockage.


2017 ◽  
Author(s):  
E. Rogdakis ◽  
P. Bitsikas ◽  
G. Dogkas

A three-dimensional Computational Fluid Dynamics - CFD simulation is conducted on a Stirling engine. The temperature in the engine spaces and the temperature profile along the regenerator are graphically presented, along with the density and the gas flow patterns in selected parts of the engine. The maximum value of pressure drop is slightly more than 6% of the mean engine pressure at the same instance. The maximum loss due to pressure drop is equal to 5 kW. In addition, the CFD results are compared to those coming from a one-dimensional model. The comparison includes data regarding the pressure of the gas during the engine cycle, the gas mass flow-rate in all the engine spaces, the respective points of flow reversal and the gas pressure drop. Finally, the net work output and efficiency of the engine are calculated. The net work output of the engine is equal to 6.7 kW and the engine’s efficiency is equal to 51%. The possible sources of further losses are discussed.


Author(s):  
Lue Derek Du ◽  
Charles Dalton

In this paper, we study uniform flow past a rotary oscillating circular cylinder computationally. The objective is to determine the effect the oscillating rotation has on the lift and drag forces acting on the cylinder, on the wake structure, and on vortex shedding. A combination of finite-difference and spectral methods is used to calculate the three-dimensional incompressible unsteady Navier-Stokes equations in primitive variable form in nonorthogonal curvilinear coordinates. Wake turbulence is modeled by an LES technique. The Reynolds number considered is Re = 1.5×104, which is the same as that in the experimental study of Tokumaru & Dimotakis (1991), who suggested this technique as a means of reducing drag. We fix the forcing amplitude at the moderate value of Ω = 2 and vary the forcing frequency in a wide range to study its effect on the flow. The resonance phenomenon and drag reduction effect are carefully examined. The wake structure and vortex shedding process is visualized by means of computational streaklines. These results have a practical application in offshore engineering.


2007 ◽  
Vol 345-346 ◽  
pp. 1377-1380 ◽  
Author(s):  
Yun Jae Kim ◽  
Kuk Hee Lee ◽  
Chi Yong Park

The present work presents plastic limit load solutions for branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials. The proposed solutions are valid for a wide range of branch junction geometries; ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


2013 ◽  
Vol 25 (1) ◽  
pp. 014105 ◽  
Author(s):  
Ming Zhao ◽  
Jitendra Thapa ◽  
Liang Cheng ◽  
Tongming Zhou

2014 ◽  
Vol 926-930 ◽  
pp. 1538-1541
Author(s):  
Hao Wang ◽  
Guo Quan Liu

Three-dimensional normal grain growth has been simulated in scale 300×300×300 using the generally accepted Potts model Monte Carlo method. The studies of the topology of grains indicate that the mean number of faces in the grain network <f>=13.91 is similar to other simulation results, but higher than most of the experimental data which containing a wide range of values, i.e., <f>=11.16~13.93. The three-dimensional AboavWeaire law and Liu-Yu law are observed to hold, but the fit coefficient is different from the theory models.


1992 ◽  
Vol 237 ◽  
pp. 343-371 ◽  
Author(s):  
K. J. Richards ◽  
D. A. Smeed ◽  
E. J. Hopfinger ◽  
G. Chabert D'Hières

This paper describes laboratory experiments on the flow over a three-dimensional hill in a rotating fluid. The experiments were carried out in towing tanks, placed on rotating tables. Rotation is found to have a strong influence on the separation behind the hill. The topology of the separation is found to be the same for all the flows examined. The Rossby number R in the experiments is of order 1, the maximum value being 6. The separated flow is dominated by a single trailing vortex. In the majority of cases the surface stress field has a single separation line and there are no singular points. In a few experiments at the highest Rossby numbers the observations suggest more complex stress fields but the results are inconclusive.A criterion for flow separation is sought. For values of D/L > 1, where D is the depth of the flow and L the lengthscale of the hill, separation is found to be primarily dependent on R. At sufficiently small values of R separation is suppressed and the flow remains fully attached.Linear theory is found to give a good estimate for the critical value of R for flow separation. For hills with a moderate slope (slope ≤ 1) this critical value is around 1, decreasing with increasing slope. It is postulated that the existence of a single dominant trailing vortex is due to the uplifting and subsequent turning of transverse vorticity generated by surface pressure forces upstream of the separation line.


Sign in / Sign up

Export Citation Format

Share Document