Planar Deployable Linkage and Its Application in Overconstrained Lift Mechanism

2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Dong-Jie Zhao ◽  
Jing-Shan Zhao ◽  
Zheng-Fang Yan

This paper investigates the application of a planar deployable structure with screw theory and discusses its possible applications in overconstrained lift platforms via calculating its stiffness. These platforms are all made up of a number of identical scissor-form pivoted links. Compared with their traditional counterparts, the lift platforms with planar deployable structures have higher stiffness and higher strength in applications because every lift platform is multiplane overconstrained mechanism connected by a strengthened frame at each deployable layer. In operation, these deployable structures are always symmetric about the vertical central axis connecting the moving platform and the fixed one. Therefore, the stress conditions of the links in each layer can be assumed to be identical as the lift platform is moving up and down. Prototype test illustrates the innovation of the lift mechanisms while keeping the same load capacity.

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


Author(s):  
Jian-She Gao ◽  
Ren-Cheng Zheng ◽  
Yong-Sheng Zhao

The actuating input selection is an important basic problem for the parallel mechanism. Based on the screw theory, the constraint screw can be got after locking a kinematic pair in any limb, which can be taken as actuating wrench acted on the moving platform of the parallel mechanism. The constraint screw matrix is composed of the structure constraint screws and the constraint screws of the actuating pairs. The reasonableness of input selection can be judged by the rank of the constraint matrix. The performance of the combinations of actuating inputs is evaluated by the condition numbers of the force constraint matrix and the torque constraint matrix respectively. The theory presented is validated by the simulation and the maching test.


2009 ◽  
Vol 407-408 ◽  
pp. 63-67 ◽  
Author(s):  
Xian Guo Han ◽  
Xue Liang Cui ◽  
Wu Yi Chen

Based on the screw theory, the force analysis of the 3-RPS parallel machine is illuminated. Been equivalent to a 6-chain parallel machine, the deformation harmony equation of the parallel machine under the outside generalized force is interpreted. The instantaneous stiffness model of the parallel machine, which includes the change of the force Jacobian matrix, is established. Considering the deviation of the position and orientation of the moving platform, which is resulted from the distortion of the PRS chains of the parallel machine, the influence of the change of the Jacobian matrix to the instantaneous stiffness model of the 3-RPS parallel machine is analyzed, and furthermore, it is verified with an instance.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


Author(s):  
Chunxu Tian ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu

This paper presents a planar five-bar metamorphic linkage which has five phases resulting from locking of motors. Reconfigurable limbs are constructed by integrating the five-bar metamorphic linage as sub-chains. The branch transition of metamorphic linkage is analyzed. By adding appropriate joints to the planer five-bar metamorphic linkage, reconfigurable limbs whose constraint can switch among no constraint, a constrained force and a constrained couple are obtained. Serial limb structures that can provide a constraint force and a constraint couple are synthesized based on screw theory. Reconfigurable limbs that have five configurations associated with the five phases of the five-bar metamorphic linkage are assembled with 4-DOF (degrees-of-freedom) serial chains. A class of reconfigurable parallel mechanisms is derived by connecting the moving platform to the base with three identical kinematic limbs. These parallel mechanisms can perform various output motion modes such as 3T, 3R, 2T1R, 1T2R, 3T1R, 2T2R, 1T3R, 2T3R, 3T2R and 3T3R. Finally, the potential application of the proposed mechanisms is analyzed and conclusions are drawn.


2012 ◽  
Vol 162 ◽  
pp. 141-150 ◽  
Author(s):  
Semaan Amine ◽  
Stéphane Caro ◽  
Philippe Wenger

This paper deals with the constraint and the singularity analysis of the Exechon. Using the screw theory, the constraint and actuation wrenches acting on the moving platform are analyzed. The motion pattern of the Exechon is characterized based on a representation of the constraint wrenches in the projective space. A wrench graph representing the constraint and actuation wrench systems in the projective space is obtained. Based on this wrench graph, a superbracket of the Exechon is formulated. Finally, this superbracket is explored to provide the geometric conditions for the parallel singularities of the Exechon.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongchuan Zhang ◽  
Benliang Zhu ◽  
Xianmin Zhang

Compliant kaleidocycles can be widely used in a variety of applications, including deployable structures, origami structures, and metamorphic robots, due to their unique features of continuous rotatability and multistability. Inspired by origami kaleidocycles, a type of symmetric multistable compliant mechanism with an arbitrary number of units is presented and analyzed in this paper. First, the basic dimension constraints are developed based on mobility analysis using screw theory. Second, the kinematic relationships of the actual rotation angle are obtained. Third, a method to determine the number of stabilities and the position of stable states, including the solution for the parameterized boundaries of stable regions, is developed. Finally, experimental platforms are established, and the validity of the proposed multistable mechanisms is verified.


2019 ◽  
Vol 805 ◽  
pp. 155-160 ◽  
Author(s):  
F. Ama Gonzalo ◽  
Mariano Molina ◽  
Covadonga Lorenzo ◽  
M.I. Castilla ◽  
Pulido D. Gomez ◽  
...  

The use of deployable structures has a wide range of applications nowadays. They can be transformed from a closed compact configuration to a predetermined expanded form, in which they are stable and can carry loads. This article describes a sort of deployable structure that has been patented by researchers of two Spanish institutions: San Pablo CEU University and Eduardo Torroja Institute. Geometric aspects are key to accomplish an efficient folding and unfolding procedure along with an optimum structural behavior when the structure is deployed. Tensioned cables are essential in these structures. The main goal is to make the cable acquire its maximum length when the structure is fully deployed. This will avoid complex operations of post-tensioning in order to make the cable perform its function.


2014 ◽  
Vol 568-570 ◽  
pp. 904-910
Author(s):  
Yan Bin Zhang ◽  
Hui Ping Wang

A novel 3-dof planar parallel mechanism, which is composed by three different limbs, is designed. The moving platform can translate along two directions and rotate around one axis with respect to the base. Mobility of the mechanism is discussed and calculated based on the screw theory. The forward and the inverse analytical position equations are derived and the veloctiy analysis is addressed too. The Jacobian matrix is an identical one, so there exists one-to-one corresponding linear controlling relationship between one of the actuated joints and one of the outputs of the platform. Moreover, the condition number of the Jacobian matrix is constantly equal to one and the mechanism shows fully-isotropic throughout entire workspace.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


Sign in / Sign up

Export Citation Format

Share Document