Impact of Compressor Surge on Performance and Emissions of a Marine Diesel Engine

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Nikolaos-Alexandros Vrettakos

The operation during compressor surge of a medium speed marine diesel engine was examined on a test bed. The compressor of the engine's turbocharger was forced to operate beyond the surge line, by injecting compressed air at the engine intake manifold, downstream of the compressor during steady-state engine operation. While the compressor was surging, detailed measurements of turbocharger and engine performance parameters were conducted. The measurements included the use of constant temperature anemometry for the accurate measurement of air velocity fluctuations at the compressor inlet during the surge cycles. Measurements also covered engine performance parameters such as in-cylinder pressure and the impact of compressor surge on the composition of the exhaust gas emitted from the engine. The measurements describe in detail the response of a marine diesel engine to variations caused by compressor surge. The results show that both turbocharger and engine performance are affected by compressor surge and fast Fourier transform (FFT) analysis proved that they oscillate at the same main frequency. Also, prolonged steady-state operation of the engine with this form of compressor surge led to a non-negligible increase of NOx emissions.

2013 ◽  
Vol 724-725 ◽  
pp. 1005-1008
Author(s):  
Ming Yue He ◽  
Hong Tao Gao ◽  
Yue Hui Wang ◽  
Wei Yan ◽  
Qing Yin ◽  
...  

For the purpose of providing a scientific reference for improving energy conservation and performance of marine diesel engine, the thermal balance analysis and exergy balance analysis and emission research on ethanol diesel-oil alternative fuel of the existing diesel engine are performed. All necessary data are obtained from an actual diesel engine of KTA50-M2 which is used in a boat located in Dalian. The result shows that engine performance parameters are of no big change, however, the exhaust emissions are significantly reduced.


2021 ◽  
pp. 146808742110692
Author(s):  
Zhenyu Shen ◽  
Yanjun Li ◽  
Nan Xu ◽  
Baozhi Sun ◽  
Yunpeng Fu ◽  
...  

Recently, the stringent international regulations on ship energy efficiency and NOx emissions from ocean-going ships make energy conservation and emission reduction be the theme of the shipping industry. Due to its fuel economy and reliability, most large commercial vessels are propelled by a low-speed two-stroke marine diesel engine, which consumes most of the fuel in the ship. In the present work, a zero-dimensional model is developed, which considers the blow-by, exhaust gas bypass, gas exchange, turbocharger, and heat transfer. Meanwhile, the model is improved by considering the heating effect of the blow-by gas on the intake gas. The proposed model is applied to a MAN B&W low-speed two-stroke marine diesel engine and validated with the engine shop test data. The simulation results are in good agreement with the experimental results. The accuracy of the model is greatly improved after considering the heating effect of blow-by gas. The model accuracy of most parameters has been improved from within 5% to within 2%, by considering the heating effect of blow-by gas. Finally, the influence of blow-by area change on engine performance is analyzed with considering and without considering the heating effect of blow-by.


Author(s):  
Harsh D. Sapra ◽  
Jaswinder Singh ◽  
Chris Dijkstra ◽  
Peter De Vos ◽  
Klaas Visser

Abstract Underwater exhaust systems are employed on board ships to allow zero direct emissions to the atmosphere with the possibility of drag reduction via exhaust gas lubrication. However, underwater expulsion of exhaust gases imparts high and dynamic back pressure, which can fluctuate in amplitude and time period as a ship operates in varying sea-states depending on its geographical location and weather conditions. Therefore, this research aims to experimentally investigate the performance of a marine diesel engine against varying amplitudes and time periods of dynamic back pressure at different sea-states due to underwater exhaust systems. In this study, a turbocharged, marine diesel engine was tested at different loads along the propeller curve against dynamic back pressure waves produced by controlling an electronic butterfly valve placed in the exhaust line after the turbine outlet. Engine performance was investigated against single and multiple back pressure waves of varying amplitudes and wave periods based on real sea-state conditions and wave data. We found that the adverse effects of dynamic back pressure on engine performance were less severe than those found against static back pressure. Governor control and turbocharger dynamics play an important role in keeping the fuel penalty and thermal loading low against dynamic back pressure. Therefore, a marine engine may be able to handle much higher levels of dynamic back pressures when operating with underwater exhaust systems in higher sea-states.


2013 ◽  
Vol 864-867 ◽  
pp. 1804-1809 ◽  
Author(s):  
Song Zhou ◽  
Yan Liu ◽  
Jin Xi Zhou

This paper introduces the impact on the marine environment caused by marine diesel engine exhaust pollution and the regulations made by IMO to control the marine diesel engine emissions. And it summarizes the main technical measures to reduce SOx, NOx and particulate matter emissions from the marine diesel. It also points that the combination application of various technologies will be the research direction to reduce the emission of marine diesel engine in the future.


Author(s):  
X Tauzia ◽  
J F Hetet ◽  
P Chesse ◽  
G Crosshans ◽  
L Mouillard

The sequential turbocharging technique described in this paper leads to an improvement in the operations of highly rated diesel engines, in particular at part loads (better air admission). However, transient phases such as a switch from one turbocharger to two turbochargers can be difficult, mainly because of the inertia of the turbochargers. In order to simulate the dynamics of turbocharged diesel engines, the SELENDIA software has been extended. When applied to two different engines (12 and 16 cylinders), the program shows good agreement with the experimental data. Moreover, the compressor surge has been investigated during faulty switch processes. The software has then been used for predictive studies to evaluate the possibility of adapting sequential turbocharging to a 20-cylinder engine and to calibrate the optimum switching conditions (air and gas valve opening timing).


2020 ◽  
Vol 3 (3) ◽  
pp. 359-372
Author(s):  
Vladimir Pelić ◽  
Tomislav Mrakovčić ◽  
Ozren Bukovac ◽  
Marko Valčić

Increasing demands on energy efficiency and environmental acceptance are being imposed on marine propulsion plants. The fulfilment of the conditions set by the MARPOL Convention, Annex VI, regarding the emissions from exhaust gases of marine diesel engines is of particular interest. This paper presents the development and validation of a zero-dimensional, single-zone diesel engine numerical model. Presented numerical model is based on the law of conservation of energy and mass and solving the resulting differential equations. The single-zone model will serve as the basis for a model where the cylinder space is divided into two or three zones during combustion. In this way, the multi-zone model will allow the modelling of nitrogen oxide emissions with satisfactory accuracy. Validation of the diesel engine model was carried out for the Wärtsilä 12V50DF 11700 kW motor designed to drive a synchronous alternator. Obtained results and deviations of certain parameters in the operation of the engine with respect to the data obtained from the measurements on the test bed, are more than satisfactory regarding complexity of the numerical model. This confirmed the usability of the model for research purposes to optimize the marine diesel engine.


Author(s):  
Hechun Wang ◽  
Xiannan Li ◽  
Yinyan Wang ◽  
Hailin Li

Marine diesel engines usually operate on a highly boosted intake pressure. The reciprocating feature of diesel engines and the continuous flow operation characteristics of the turbocharger (TC) make the matching between the turbocharger and diesel engine very challenging. Sequential turbocharging (STC) technology is recognized as an effective approach in improving the fuel economy and exhaust emissions especially at low speed and high torque when a single stage turbocharger is not able to boost the intake air to the pressure needed. The application of STC technology also extends engine operation toward a wider range than that using a single-stage turbocharger. This research experimentally investigated the potential of a STC system in improving the performance of a TBD234V12 model marine diesel engine originally designed to operate on a single-stage turbocharger. The STC system examined consisted of a small (S) turbocharger and a large (L) turbocharger which were installed in parallel. Such a system can operate on three boosting modes noted as 1TC-S, 1TC-L and 2TC. A rule-based control algorithm was developed to smoothly switch the STC operation mode using engine speed and load as references. The potential of the STC system in improving the performance of this engine was experimentally examined over a wide range of engine speed and load. When operated at the standard propeller propulsion cycle, the application of the STC system reduced the brake specific fuel consumption (BSFC) by 3.12% averagely. The average of the exhaust temperature before turbine was decreased by 50°C. The soot and oxides of nitrogen (NOx) emissions were reduced respectively. The examination of the engine performance over an entire engine speed and torque range demonstrated the super performance of the STC system in extending the engine operation toward the high torque at low speed (900 to 1200 RPM) while further improving the fuel economy as expected. The engine maximum torque at 900 rpm was increased from 1680Nm to 2361 Nm (40.5%). The average BSFC over entire working area was improved by 7.4%. The BSFC at low load and high torque was significantly decreased. The application of the STC system also decreased the average NOx emissions by 31.5% when examined on the propeller propulsion cycle.


Sign in / Sign up

Export Citation Format

Share Document