Computer aided study of the transient performances of a highly rated sequentially turbocharged marine diesel engine

Author(s):  
X Tauzia ◽  
J F Hetet ◽  
P Chesse ◽  
G Crosshans ◽  
L Mouillard

The sequential turbocharging technique described in this paper leads to an improvement in the operations of highly rated diesel engines, in particular at part loads (better air admission). However, transient phases such as a switch from one turbocharger to two turbochargers can be difficult, mainly because of the inertia of the turbochargers. In order to simulate the dynamics of turbocharged diesel engines, the SELENDIA software has been extended. When applied to two different engines (12 and 16 cylinders), the program shows good agreement with the experimental data. Moreover, the compressor surge has been investigated during faulty switch processes. The software has then been used for predictive studies to evaluate the possibility of adapting sequential turbocharging to a 20-cylinder engine and to calibrate the optimum switching conditions (air and gas valve opening timing).

2012 ◽  
Vol 157-158 ◽  
pp. 1075-1078
Author(s):  
Yang Wang ◽  
Yin Yan Wang ◽  
Fan Shi ◽  
Xin Guang Li

A computer model for a TBD234V12 marine high-speed diesel engine with 2 turbocharger(2TC) is built on GT-POWER. For validating the computer model, a calculation to the conventional turbocharging system has been done firstly, and the results show good agreement with experimental data. The computer model has then been used for predictive studies of the diesel engine with the proposed STC system on the mapping characteristics. From these results, it can be seen that the STC system can not only improve the part load performance of the diesel engine obviously, but also enlarge the operating range of the marine diesel engine.


Author(s):  
Б.И. Руднев ◽  
О.В. Повалихина

Температура пламени и степень черноты определяют его собственное излучение. Однако оценка указанных параметров на стадии проектирования судовых дизелей представляет собой трудную и еще пока нерешенную проблему. Последнее обусловливается сложностью достоверного математического моделирования процесса сгорания топлива в дизельных двигателях и весьма высокой стоимостью экспериментальных исследований в этой области. Целью данной статьи является разработка расчетно-экспериментального метода определения параметров излучения пламени в камере сгорания судового дизеля 6 ЧН 24/36. Показано, что оценка величины температуры пламени в камере сгорания в функции угла поворота коленчатого вала может быть выполнена по температуре газов, найденной из экспериментальной или расчетной индикаторной диаграммы и специального параметра. Последний определяется на основании зависимости, полученной путем обобщения экспериментальных данных по измерениям температуры пламени на ряде дизельных двигателей. Представлены результаты по температуре пламени для судового дизеля 6 ЧН 24/36, полученные с использованием разработанного расчетно-экспериментального метода. Установлено, что с ростом нагрузки температура пламени возрастает. При этом в диапазоне изменения нагрузки дизеля от 50% до 100% от номинальной мощности увеличение температуры пламени примерно в два раза превышает увеличение температуры газов. Использование полученных результатов для оценки собственных потоков излучения пламени в камере сгорания судового дизеля 6 ЧН 24/36 и сопоставление их с известными экспериментальными данными показало сходимость в пределах 10 – 15%. The flame temperature and radiating power are determined with its own radiation. However, the assessment of these parameters at the design stage of marine diesel engines is a complicated and still unsolved problem. The latter is due to the complexity of reliable mathematical modeling of the fuel combustion process in diesel engines and the very high cost of experimental research in this area. The purpose of this article is to develop a computational and experimental method for determining the parameters of flame radiation in the combustion chamber of marine diesel engine 6 ChN 24/36. It is shown that the estimation of the value of flame temperature in the combustion chamber as a function of the crankshaft rotation angle can be performed using the gas temperature found from the experimental or calculated indicator diagram and a special parameter. The latter is determined on the basis of the dependence obtained by generalizing experimental data of the flame temperature measurements at a number of diesel engines. The results on the flame temperature for marine diesel engine 6 ChN 24/36, obtained using the developed computational and experimental method, are presented. It has been found that the flame temperature increases with increasing load. At the same time, in the range of diesel load variation from 50% to 100% of the nominal power, an increase in the flame temperature is approximately twice more than an increase in the gas temperature. The use of the results obtained to assess the intrinsic fluxes of flame radiation in the combustion chamber of marine diesel engine 6 ChN 24/36 and their comparison with the known experimental data showed the convergence within 10 - 15%.


Author(s):  
Hechun Wang ◽  
Xiannan Li ◽  
Yinyan Wang ◽  
Hailin Li

Marine diesel engines usually operate on a highly boosted intake pressure. The reciprocating feature of diesel engines and the continuous flow operation characteristics of the turbocharger (TC) make the matching between the turbocharger and diesel engine very challenging. Sequential turbocharging (STC) technology is recognized as an effective approach in improving the fuel economy and exhaust emissions especially at low speed and high torque when a single stage turbocharger is not able to boost the intake air to the pressure needed. The application of STC technology also extends engine operation toward a wider range than that using a single-stage turbocharger. This research experimentally investigated the potential of a STC system in improving the performance of a TBD234V12 model marine diesel engine originally designed to operate on a single-stage turbocharger. The STC system examined consisted of a small (S) turbocharger and a large (L) turbocharger which were installed in parallel. Such a system can operate on three boosting modes noted as 1TC-S, 1TC-L and 2TC. A rule-based control algorithm was developed to smoothly switch the STC operation mode using engine speed and load as references. The potential of the STC system in improving the performance of this engine was experimentally examined over a wide range of engine speed and load. When operated at the standard propeller propulsion cycle, the application of the STC system reduced the brake specific fuel consumption (BSFC) by 3.12% averagely. The average of the exhaust temperature before turbine was decreased by 50°C. The soot and oxides of nitrogen (NOx) emissions were reduced respectively. The examination of the engine performance over an entire engine speed and torque range demonstrated the super performance of the STC system in extending the engine operation toward the high torque at low speed (900 to 1200 RPM) while further improving the fuel economy as expected. The engine maximum torque at 900 rpm was increased from 1680Nm to 2361 Nm (40.5%). The average BSFC over entire working area was improved by 7.4%. The BSFC at low load and high torque was significantly decreased. The application of the STC system also decreased the average NOx emissions by 31.5% when examined on the propeller propulsion cycle.


1984 ◽  
Vol 19 (5) ◽  
pp. 410-420
Author(s):  
Youichi Koyama ◽  
Isao Takasu ◽  
Keiichi Nitta ◽  
Tadayuki Kan

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Nikolaos-Alexandros Vrettakos

The operation during compressor surge of a medium speed marine diesel engine was examined on a test bed. The compressor of the engine's turbocharger was forced to operate beyond the surge line, by injecting compressed air at the engine intake manifold, downstream of the compressor during steady-state engine operation. While the compressor was surging, detailed measurements of turbocharger and engine performance parameters were conducted. The measurements included the use of constant temperature anemometry for the accurate measurement of air velocity fluctuations at the compressor inlet during the surge cycles. Measurements also covered engine performance parameters such as in-cylinder pressure and the impact of compressor surge on the composition of the exhaust gas emitted from the engine. The measurements describe in detail the response of a marine diesel engine to variations caused by compressor surge. The results show that both turbocharger and engine performance are affected by compressor surge and fast Fourier transform (FFT) analysis proved that they oscillate at the same main frequency. Also, prolonged steady-state operation of the engine with this form of compressor surge led to a non-negligible increase of NOx emissions.


2021 ◽  
Vol 28 (4) ◽  
pp. 63-87
Author(s):  
Mohammad Hossein Ghaemi

Abstract To analyse the behaviour of marine diesel engines in unsteady states for different purposes, for example to determine the fuel consumption or emissions level, to adjust the control strategy, to manage the maintenance, etc., a goal-based mathematical model that can be easily implemented for simulation is necessary. Such a model usually requires a wide range of operating data, measured on a test stand. This is a time-consuming process with high costs and the relevant data are not available publicly for a selected engine. The present paper delivers a rapid and relatively simple method for preparing a simulation model of a given marine diesel engine, based only on the widely available data in the project guides indicated for steady state conditions. After establishing the framework of the mathematical model, it describes how the parameters of the model can be adjusted for the simulation model and how the results can be verified as well. Conceptually, this is a trial and error method, but the presented case example makes clear how the parameters can be selected to reduce the number of trials and quickly determine the model parameters. The necessary descriptions are given through a case study, which is the MAN-B&W 8S65ME-C8 marine diesel engine. The engine is assumed to be connected to a constant pitch propeller. The presented mathematical model is a mean-value zero-dimensional type with seven state variables. The other variables of the engine are determined based on the state independent variables and the input value, which is the fuel rate. The paper can be used as a guideline to prepare a convenient mathematical model for simulation, with the minimum publicly available data.


2021 ◽  
Vol 27 (1) ◽  
pp. 108-119
Author(s):  
Сергей Викторович Сагин ◽  
Тимур Александрович Столярик

Annotation – The influence of the structural characteristics of engine lube oil on the dynamics of a marine diesel engine is considered. It is indicated that micron layers of marine engine lube oils separating the contact surfaces of marine diesel engines acquire the properties of liquid crystals and are characterized by an ordered molecular structure. The qualitative indicator of this structure is the degree of ordering of the molecules, and the quantitative indicator is the thickness of the ordered (boundary) lubricating layer. It is proposed to determine the structural characteristics of marine engine lube oils (the degree of ordering of the molecules of the boundary layer and its thickness) using the optical method of absorption dichroism. A diagram of an experimental setup is presented that allows such studies to be carried out. It has been experimentally established that for Shell Rimula X15 and Castrol TPL 123 engine lube oils (used in the oil system of the Caterpillar CatC18 marine diesel engine), the thickness of the ordered (boundary) lubricating layer is 14.3 ... 14.7 microns and 16.4 ... 16.6 microns, respectively. The degree of ordering of molecules in the boundary layer for Shell Rimula X15 engine lube oil is in the range of 0.56 ... 0.58, for Castrol TPL 123 engine lube oil – in the range of 0.63 ... 0.64. The results of studies of the dynamics of the CatC18 marine diesel engine by Caterpillar, carried out in the starting mode, as well as at various increases and decreases in load, are presented. As indicators, which were used to assess the dynamics of the diesel engine, the overshoot of the rotational speed and the time to reach a new steady state mode were taken. Experiments have confirmed that Castrol TPL 123 engine lube oil, which has a higher molecular structure in the boundary layer compared to Shell Rimula X15 lube oil, ensures the transient processes of the Caterpillar CatC18 marine diesel engine with less overspeed and less time to reach a new state work. The proposed technology for determining the structural characteristics of engine lube oils can be used for any type and grade of oil (mineral or synthetic, high and low viscosity, used both in circulating and cylinder lubrication systems). The proposed method for assessing the dynamic characteristics of marine diesel engines (by overshoot of the speed and the time to reach a steady state of operation in the event of a change in load) can be used for any types of internal combustion engines (low-, medium- and high-speed; as well as performing the functions of both main and auxiliary engines).


2021 ◽  
Vol 93 (6s) ◽  
pp. 273-278
Author(s):  
Hristo Hristov ◽  
◽  
Ivaylo Bakalov ◽  
Bogdan Shopov ◽  
Dobromir Yovkov ◽  
...  

The introduction of new fuels in the field of maritime transport is considered a serious challenge due to the harsh environmental conditions in which the motor ship must operate. Modern marine engines are designed to improve the overall efficiency of the marine system so any attempt to exploit a new fuel must be accompanied by scientific research and experimental data to provide engineers and ship operators with sufficient information on its efficiency and safety.


Sign in / Sign up

Export Citation Format

Share Document