scholarly journals Energy Consumption Modeling and Analyses in Automotive Manufacturing Plant

Author(s):  
Lujia Feng ◽  
Laine Mears

Manufacturing plants energy consumption accounts for a large share in world energy usage. Energy consumption modeling and analyses are widely studied to understand how and where the energy is used inside of the plants. However, a systematic energy modeling approach is seldom studied to describe the holistic energy in the plants. Especially using layers of models to share information and guide the next step modeling is rarely studied. In this paper, a manufacturing system temporal and organizational framework was used to guide the systematic energy modeling approach. Various levels of models were established and tested in an automotive manufacturing plant to illustrate how the approach can be implemented. A detail paint spray booth air unit was described to demonstrate how to investigate the most sensitive variables in affecting energy consumption. While considering the current plant metering status, the proposed approach is advanced in information sharing and improvement suggestion determination.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3912
Author(s):  
Wassim Salameh ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Rabih Murr ◽  
Mahmoud Khaled

In the context of a world energy crisis, the only solution to control the situation is in the management of energy. One of the most important management keys is the optimization of electrical components. This article presents a complete numerical and experimental study aiming for the optimization of electrical water heaters for household use. The optimization conceives the minimization of energy consumption simultaneously with the minimization of time to heat water. Firstly, a thermal model well adapted for the case of heaters is constructed and validated experimentally and then a parametric study is conducted covering all the input power, the volume and the external area of the heater. Results are promising, showing significant energy savings are possible with an optimum setting of these parameters, thus presenting a firm tool for the optimization of heaters.


2014 ◽  
Vol 606 ◽  
pp. 265-269 ◽  
Author(s):  
Seyed Mojib Zahraee ◽  
Milad Hatami ◽  
Ali Asghar Bavafa ◽  
Kambiz Ghafourian ◽  
Jafri Mohd Rohani

Today energy consumption is one of the controversial issues in the world. The rapid growing world energy consumption has already increased concern about the supply problems, heavy environmental effects such as global warming, climate change and etc. One of the most users of energy is residential buildings that consume the biggest share of energy. Growth in population, rising demand for buildings together causes to increase the upward trend in energy consumption. Therefore, energy efficiency in buildings plays a significant role to decrease the environmental effect. The goal of this paper is optimizing the main elements which are window, ceiling and wall by considering the effect of uncontrollable factors such as humidity , temperature and pressure in residential buildings using statistical method namely Taguchi method (JMP 11 software). A two-storey house in Malaysia was selected to simulate by means of BIM application. Based on the result, the optimum energy saving will be achieved when the type of material which are used for wall ,ceiling and window to be Brick Plaster , Acoustic Tile Suspended and Single Glazed Alum Frame respectively.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


2016 ◽  
Vol 22 (1) ◽  
pp. 04015010 ◽  
Author(s):  
William O. Collinge ◽  
Justin C. DeBlois ◽  
Amy E. Landis ◽  
Laura A. Schaefer ◽  
Melissa M. Bilec

Sign in / Sign up

Export Citation Format

Share Document