On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Keyvan Amini Khoiy ◽  
Rouzbeh Amini

Located on the right side of the heart, the tricuspid valve (TV) prevents blood backflow from the right ventricle to the right atrium. Similar to other cardiac valves, quantification of TV biaxial mechanical properties is essential in developing accurate computational models. In the current study, for the first time, the biaxial stress–strain behavior of porcine TV was measured ex vivo under different loading protocols using biaxial tensile testing equipment. The results showed a highly nonlinear response including a compliant region followed by a rapid transition to a stiff region for all of the TV leaflets both in the circumferential and in the radial directions. Based on the data analysis, all three leaflets were found to be anisotropic, and they were stiffer in the circumferential direction in comparison to the radial direction. It was also concluded that the posterior leaflet was the most anisotropic leaflet.

1990 ◽  
Vol 259 (1) ◽  
pp. H101-H108 ◽  
Author(s):  
J. D. Humphrey ◽  
R. K. Strumpf ◽  
F. C. Yin

We present results from in vitro biaxial stress-strain experiments on epicardium excised from the right and left ventricular free walls of canine hearts. These data reveal that the biomechanical behavior of ventricular epicardium is qualitatively similar to atrial epicardium and parietal pericardium but different from noncontracting myocardium. In particular, ventricular epicardium exhibits a highly nonlinear stress-stretch behavior, being initially compliant but then very stiff near the limits of its extensibility. In addition, the epicardium appears to be initially isotropic but becomes markedly anisotropic upon rapid stiffening. Finally, specimens taken from the right and left ventricular free walls behaved similarly. We submit that excised ventricular epicardium is capable of carrying significant in-plane loads and that there is a need to investigate further its role in local and global cardiac mechanics and physiology.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Keyvan Amini Khoiy ◽  
Anup D. Pant ◽  
Rouzbeh Amini

The tricuspid valve is a one-way valve on the pulmonary side of the heart, which prevents backflow of blood during ventricular contractions. Development of computational models of the tricuspid valve is important both in understanding the normal valvular function and in the development/improvement of surgical procedures and medical devices. A key step in the development of such models is quantification of the mechanical properties of the tricuspid valve leaflets. In this study, after examining previously measured five-loading-protocol biaxial stress–strain response of porcine tricuspid valves, a phenomenological constitutive framework was chosen to represent this response. The material constants were quantified for all three leaflets, which were shown to be highly anisotropic with average anisotropy indices of less than 0.5 (an anisotropy index value of 1 indicates a perfectly isotropic response, whereas a smaller value of the anisotropy index indicates an anisotropic response). To obtain mean values of material constants, stress–strain responses of the leaflet samples were averaged and then fitted to the constitutive model (average R2 over 0.9). Since the sample thicknesses were not hugely different, averaging the data using the same tension levels and stress levels produced similar average material constants for each leaflet.


2019 ◽  
Vol 6 (3) ◽  
pp. 70 ◽  
Author(s):  
Samuel D. Salinas ◽  
Margaret M. Clark ◽  
Rouzbeh Amini

Since many soft tissues function in an isotonic in-vivo environment, it is expected that physiological osmolarity will be maintained when conducting experiments on these tissues ex-vivo. In this study, we aimed to examine how not adhering to such a practice may alter the mechanical response of the tricuspid valve (TV) anterior leaflet. Tissue specimens were immersed in deionized (DI) water prior to quantification of the stress–strain responses using an in-plane biaxial mechanical testing device. Following a two-hour immersion in DI water, the tissue thickness increased an average of 107.3% in the DI water group compared to only 6.8% in the control group, in which the tissue samples were submerged in an isotonic phosphate buffered saline solution for the same period of time. Tissue strains evaluated at 85 kPa revealed a significant reduction in the radial direction, from 34.8% to 20%, following immersion in DI water. However, no significant change was observed in the control group. Our study demonstrated the impact of a hypo-osmotic environment on the mechanical response of TV anterior leaflet. The imbalance in ions leads to water absorption in the valvular tissue that can alter its mechanical response. As such, in ex-vivo experiments for which the native mechanical response of the valves is important, using an isotonic buffer solution is essential.


2011 ◽  
Vol 110 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Béla Suki ◽  
Jason H. T. Bates

The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.


Author(s):  
Ruogang Zhao ◽  
Krista Lynn Sider ◽  
Craig A. Simmons

Micropipette aspiration (MA) has been widely used to measure the biomechanical properties of cells and biomaterials [1]. Typically a linear elastic half-space model is used to fit the experimental load-deformation data [1]. However, load-deformation relationships for most biological tissues are highly nonlinear, suggesting alternative constitutive models are necessary. In the case of aortic heart valve tissue, exponential-type constitutive models have been found to fit the biaxial stress-strain behavior well [2]. Based on these studies, Butcher et al. used an exponential constitutive model to characterize the response of chicken embryonic valve (atrioventricular cushion) under MA [3]. To do so, they implemented an analytical exponential constitutive model [2] and directly related the stress and strain to the experimentally measured pressure and aspiration length. This allowed the authors to fit the tissue MA data without accounting for the complexities of the boundary conditions and multicomponent strain field inherent in MA. However, it is unclear whether the material parameters estimated using this approach are different from those estimated by solving the more complex boundary value problem, which presumably more faithfully simulates the physical process of tissue aspiration.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Keyvan Amini Khoiy ◽  
Dipankar Biswas ◽  
Thomas N. Decker ◽  
Kourosh T. Asgarian ◽  
Francis Loth ◽  
...  

Quantification of the tricuspid valve (TV) leaflets mechanical strain is important in order to understand valve pathophysiology and to develop effective treatment strategies. Many of the traditional methods used to dynamically open and close the cardiac valves in vitro via flow simulators require valve dissection. Recent studies, however, have shown that restriction of the atrioventricular valve annuli could significantly change their in vivo deformation. For the first time, the porcine valve leaflets deformation was measured in a passive ex vivo beating heart without isolating and remounting the valve annuli. In particular, the right ventricular apexes of porcine hearts (n = 8) were connected to a pulse-duplicator pump that maintained a pulsatile flow from and to a reservoir connected to the right atrium and the pulmonary arteries. This pump provided a right ventricular pressure (RVP) waveform that closely matched physiological values, leading to opening and closure of the tricuspid and pulmonary valves (PVs). At the midsection of the valve leaflets, the peak areal strain was 9.8 ± 2.0% (mean±standard error). The peak strain was 5.6 ± 1.1% and 4.3 ± 1.0% in the circumferential and radial directions, respectively. Although the right ventricle was beating passively, the leaflet peak areal strains closely matched the values measured in other atrioventricular valves (i.e., the mitral valve (MV)) in vivo. This technique can be used to measure leaflet strains with and without the presence of valve lesions to help develop/evaluate treatment strategies to restore normal valve deformation.


1992 ◽  
Vol 68 (05) ◽  
pp. 500-505 ◽  
Author(s):  
Ch M Samama ◽  
Ph Bonnin ◽  
M Bonneau ◽  
G Pignaud ◽  
E Mazoyer ◽  
...  

SummaryWe investigated the comparative antithrombotic properties of clopidogrel, an analogue of ticlopidine, and aspirin, using the Folts' model on femoral arteries in 22 pigs. On each animal, clopidogrel or aspirin were used to treat the thrombotic process on the left femoral artery and to prevent this process on the right femoral artery. Sequentially: an injury and stenosis were carried out on the left femoral artery; the thrombotic process was monitored with a Doppler during a 30-min observation period for cyclic flow reductions or permanent cessation of flow; after the first cyclic flow reduction occurred, clopidogrel (5 mg kg-1) or aspirin (2.5, 5, 100 mg kg-1) were injected intravenously; if cyclic flow reductions were abolished, epinephrine (0.4 µg kg-1 min-1) was injected to try to restore cyclic flow reductions and/or permanent cessation of flow; then injury and stenosis were applied on the right femoral artery. Before and after injection of clopidogrel or aspirin, ear immersion bleeding times and ex-vivo platelet aggregation were performed. Clopidogrel (n = 7) abolished cyclic flow reductions in all animals and epinephrine did not restore any cyclic flow reduction. On the right femoral artery, cyclic flow reductions were efficiently prevented, even for two injuries. Basal bleeding time (5 min 28) was lengthened (>15 min, 30 min after clopidogrel and remained prolonged even after 24 h). ADP-induced platelet aggregation was inhibited (more than 78%). Comparatively, aspirin had a moderate and no dose-dependent effect. Aspirin 2.5 mg kg-1 (n = 6) abolished cyclic flow reductions in 2 animals, CFR reoccurred spontaneously in one animal and epinephrine restored it in a second animal. Aspirin 5 mg kg-1 (n = 6) abolished cyclic flow reductions in only 3 animals and epinephrine always restored it. Aspirin 100 mg kg-1 (n = 3) was unable to abolish cyclic flow reductions. On the right femoral artery, aspirin did not significantly prevent cyclic flow reductions which occurred in all animals after one (n = 14) or two injuries (n = 1), except for one animal. Basal bleeding time was lengthened but it shortened rapidly, reaching its basal value after 24 h. ADP-induced aggregation was not significantly inhibited, whereas arachidonic acid induced aggregation was always inhibited. Clopidogrel appears as a more potent antithrombotic drug than aspirin in this model, in treating and preventing spontaneous or epinephrine-induced cyclic flow reductions and lengthening bleeding time.


1992 ◽  
Vol 68 (02) ◽  
pp. 214-220 ◽  
Author(s):  
C Weber ◽  
J R Beetens ◽  
F Tegtmeier ◽  
P Van Rooy ◽  
E Vercammen ◽  
...  

SummaryThe effects of ridogrel, a dual thromboxane A2 (TXA2) synthase inhibitor and TXA2/prostaglandin (PG) endoperoxide receptor antagonist, on systemic and renal production of prostaglandins and on platelet TXA2/PG endoperoxide receptors was evaluated upon chronic administration (300 mg b. i. d. orally, for 8 and 29 days) to man. Such a medication with ridogrel inhibits the systemic as well as the renal production of TXA2 as measured by the urinary excretion of 2,3-dinor-TXB2 and TXB2 respectively without inducing significant changes in systemic or renal PGI2 production. Simultaneously with the latter effects, the production of TXB2 by spontaneously coagulated whole blood ex vivo is inhibited (>99%) while that of PGE2 and PGF2α is largely increased. Administration of ridogrel causes a three- to five-fold shift to the right of concentration-response curves for U46619 in eliciting platelet aggregation; no tachyphylaxis is observed after 29 days of treatment in this respect. Apart from a reduction of serum uric acid levels with a concomitant increase in urinary uric acid excretion during the first days of treatment, no clinically significant changes in hematological, biochemical, hemodynamic and coagulation parameters occur during the 8 days or 29 days study. The study demonstrates that ridogrel is a potent inhibitor of the systemic as well as renal TXA2 synthase and an antagonist of platelet TXA2/PG endoperoxide receptor in man, covering full activity during 24 h at steady-state plasma level conditions without tachyphylaxis during 29 days of medication. The compound is well tolerated, at least during 1 month of administration.


2016 ◽  
Vol 19 (2) ◽  
pp. 077
Author(s):  
Ireneusz Haponiuk ◽  
Maciej Chojnicki ◽  
Konrad Paczkowski ◽  
Wojciech Kosiak ◽  
Radosław Jaworski ◽  
...  

The presence of a pathologic mass in the right ventricle (RV) may lead to hemodynamic consequences and to a life-threatening incident of pulmonary embolism. The diagnosis of an unstable thrombus in the right heart chamber usually necessitates intensive treatment to dissolve or remove the pathology. We present a report of an unusual complication of severe ketoacidosis: thrombus in the right ventricle, removed from the tricuspid valve (TV) apparatus. A four-year-old boy was diagnosed with diabetes mellitus (DM) type I de novo. During hospitalization, a 13.9 × 8.4 mm tumor in the RV was found in a routine cardiac ultrasound. The patient was referred for surgical removal of the floating lesion from the RV. The procedure was performed via midline sternotomy with extracorporeal circulation (ECC) and mild hypothermia. Control echocardiography showed complete tumor excision with normal atrioventricular valves and heart function. Surgical removal of the thrombus from the tricuspid valve apparatus was effective, safe, and a definitive therapy for thromboembolic complication of pediatric severe ketoacidosis.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document