Application of ANN Back-Propagation for Fracture Design Parameters in Extra-Low Cycle Rotating Bending Fatigue

2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.

2013 ◽  
Vol 345 ◽  
pp. 272-276 ◽  
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Zhi Jia Sun ◽  
Yang Yang Zhang

The fracture problems of medium carbon steel (MCS) under extra-low cycle bend torsion loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth and tip radius of the notch, and the output, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2010 ◽  
Vol 105-106 ◽  
pp. 108-111
Author(s):  
Zhi Yuan Rui ◽  
Hong Yan Duan ◽  
Chun Li Lei ◽  
Xing Chun Wei

Artificial neural network (ANN) back-propagation model was developed to predict the fracture design parameters in reinforced ceramic matrix composites (CMCS).Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, the presetting deflection and tip radius of the notch, and the output, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. The ANN model exhibited excellent comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used.


2014 ◽  
Vol 574 ◽  
pp. 342-346
Author(s):  
Hong Yan Duan ◽  
Huan Rong Zhang ◽  
Ming Zheng ◽  
Xiao Hong Wang

The fracture problems of medium carbon steel under extra-low cycle bend torsion fatigue loading were studied using artificial neural networks (ANN) in this paper. The ANN model exhibited excellent comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, the presetting deflection and notch open angle, and the output, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


1999 ◽  
Vol 39 (1) ◽  
pp. 451 ◽  
Author(s):  
H. Crocker ◽  
C.C. Fung ◽  
K.W. Wong

The producing M. australis Sandstone of the Stag Oil Field is a bioturbated glauconitic sandstone that is difficult to evaluate using conventional methods. Well log and core data are available for the Stag Field and for the nearby Centaur–1 well. Eight wells have log data; six also have core data.In the past few years artificial intelligence has been applied to formation evaluation. In particular, artificial neural networks (ANN) used to match log and core data have been studied. The ANN approach has been used to analyse the producing Stag Field sands. In this paper, new ways of applying the ANN are reported. Results from simple ANN approach are unsatisfactory. An integrated ANN approach comprising the unsupervised Self-Organising Map (SOM) and the Supervised Back Propagation Neural Network (BPNN) appears to give a more reasonable analysis.In this case study the mineralogical and petrophysical characteristics of a cored well are predicted from the 'training' data set of the other cored wells in the field. The prediction from the ANN model is then used for comparison with the known core data. In this manner, the accuracy of the prediction is determined and a prediction qualifier computed.This new approach to formation evaluation should provide a match between log and core data that may be used to predict the characteristics of a similar uncored interval. Although the results for the Stag Field are satisfactory, further study applying the method to other fields is required.


2021 ◽  
Author(s):  
Shubham Pandey ◽  
Jiaxing Qu ◽  
Vladan Stevanovic ◽  
Peter St. John ◽  
Prashun Gorai

The discovery of new inorganic materials in unexplored chemical spaces necessitates calculating total energy quickly and with sufficient accuracy. Machine learning models that provide such a capability for both ground-state (GS) and higher-energy structures would be instrumental in accelerating the screening for new materials over vast chemical spaces. Here, we develop a unique graph neural network model to accurately predict the total energy of both GS and higher-energy hypothetical structures. We use ~16,500 density functional theory calculated total energy from the NREL Materials Database and ~11,000 in-house generated hypothetical structures to train our model, thus making sure that the model is not biased towards either GS or higher-energy structures. We also demonstrate that our model satisfactorily ranks the structures in the correct order of their energies for a given composition. Furthermore, we present a thorough error analysis to explain several failure modes of the model, which highlights both prediction outliers and occasional inconsistencies in the training data. By peeling back layers of the neural network model, we are able to derive chemical trends by analyzing how the model represents learned structures and properties.


2013 ◽  
Vol 303-306 ◽  
pp. 1081-1084
Author(s):  
Jing Yin

To effectively recognize gait signal between healthy people and patients with Parkinson, a gait signal recognition model is established based on neural network of error back propagation (EBP), and a method is proposed to effectively extract characteristic parameters. In this paper, coefficient of variation is applied in the research of gait-pressure multi-characteristic parameters through gait-pressure signal, and the neural network model can automatically recognize gait-pressure characteristics between healthy people and patients with Parkinson. This can contribute to the recognition and diagnosis of patients with Parkinson. Experiment results show a recognition rate of 90%.


2019 ◽  
Vol 116 (2) ◽  
pp. 201
Author(s):  
Xiaoli Yuan ◽  
Lin Wang ◽  
Jianqiang Zhang ◽  
Oleg Ostrovski ◽  
Chen Zhang ◽  
...  

Viscosity is an important property of mold fluxes for steel continuous casting. However, direct measurement of viscosity of multi-component systems in a broad range of temperatures and compositions is an onerous work and has some limitations. This paper developed a model using the back propagation (BP) neural network to describe the viscosity of fluorine-free mold fluxes. The BP neural network model was developed and validated using 70 experimental values of viscosity of fluorine-free mold fluxes CaO-SiO2-Al2O3-B2O3-Na2O-TiO2-MgO-Li2O-MnO-ZrO2; 51 of them were used for developing the neural network model and the rest 19 viscosity data for the model validation. Calculated viscosities were in a good agreement with the experimental data. Based on the developed model, the effects of temperature and composition on the viscosity of fluorine-free fluxes were predicted and discussed.


2012 ◽  
Vol 510 ◽  
pp. 723-728 ◽  
Author(s):  
Liang Cheng ◽  
Hui Chang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jin Shan Li

In this work, a back propagation artificial neural network (BP-ANN) model is conducted to predict the flow behaviors of high-Nb TiAl (TNB) alloys during high temperature deformation. The inputs of the neural network are deformation temperature, log strain rate and strain whereas flow stress is the output. There is a single hidden layer with 7 neutrons in the network, and the weights and bias of the network were optimized by Genetic Algorithm (GA). The comparison result suggests a very good correlation between experimental and predicted data. Besides, the non-experimental flow stress predicted by the network is shown to be in good agreement with the results calculated by three dimensional interpolation, which confirmed a good generalization capability of the proposed network.


2013 ◽  
Vol 373-375 ◽  
pp. 1212-1219
Author(s):  
Afrias Sarotama ◽  
Benyamin Kusumoputro

A good model is necessary in order to design a controller of a system off-line. It is especially beneficial in the implementation of new advanced control schemes in Unmanned Aerial Vehicle (UAV). Considering the safety and benefit of an off-line tuning of the UAV controllers, this paper identifies a dynamic MIMO UAV nonlinear system which is derived based on the collection of input-output data taken from a test flights (36250 samples data). These input-output sample flight data are grouped into two flight data sets. The first flight data set, a chirp signal, is used for training the neural network in order to determine parameters (weights) for the network. Validation of the network is performed using the second data set, which is not used for training, and is a representation of UAV circular flight movement. An artificial neural network is trained using the training data set and thereafter the network is excited by the second set input data set. The predicted outputs based on our proposed Neural Network model is similar to the desired outputs (roll, pitch and yaw) which has been produced by real UAV system.


Sign in / Sign up

Export Citation Format

Share Document