Bauschinger Effect Prediction in Thick-Walled Autofrettaged Cylindrical Pressure Vessels

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
V. Bastun ◽  
I. Podil'chuk

The paper addresses the Bauschinger effect under complex stress state in materials with deformation-induced anisotropy whose strain hardening is described by the isotropic–kinematic (translational) type hardening hypothesis. The Bauschinger effect is analyzed using the model based on the yield surface conception and graphical–analytical method of construction of constitutive equations under complex loading. As an example, cylindrical pressure vessels with closed and open ends subjected to autofrettage are considered. The tension–compression Bauschinger effect in the axial and hoop directions as well as the Bauschinger effect under reversed torsion with respect to the longitudinal axis is determined. The role of such factors as the level of prestraining under autofrettage, relation between isotropic and kinematic components of the strain hardening, and chemical composition of the material is analyzed. The results obtained are presented in the form of plots.

2021 ◽  
Vol 3 (1) ◽  
pp. 6-26
Author(s):  
I. Karpiuk ◽  
◽  
Ye. Klymenko ◽  
V. Karpiuk ◽  
M. Karpiuk ◽  
...  

The article discusses a nonlinear deformation-force model of a concrete bar structure with a non-metallic composite reinforcement (NKA-FRP) in the general case of a stressed state, when all four internal force factors from an external load (namely, bending and twisting moments, transverse and longitudinal forces). A sufficiently deep and meaningful analysis of well-known studies on the selected topic is given. It has been established that the proposed nonlinear deformation-force model of a bar structure with FRP in the general case of a stressed state can be practically useful due to the possibility of its application in the design or reinforcement of beams, girders, columns and elements of rosette trusses of rectangular cross-section, which are operated under aggressive environmental conditions. This model can also be used to check the bearing capacity of existing FRP concrete bar structures, which operate not only under the influence of an aggressive environment, but also under conditions of a complex stress-strain state. In the course of the research, an algorithm was developed for determining the bearing capacity of the design section of a concrete rod with FRP under its complex stress state. General physical relations for the design section are given in the form of a stiffness matrix. The algorithm for calculating a concrete bar with FRP consists of a block for inputting the initial data, the main part, auxiliary subroutines for checking the conditions for increasing the load vector and depletion of the bearing capacity, as well as a block for printing the calculation results. At each stage of a simple static stepwise increasing load, the calculation is carried out by performing a certain number of iterations until the accuracy of determining all components of the deformation vector satisfies a certain predetermined value. The features and patterns of changes in normal and tangential stresses, generalized linear and angular deformations, as well as the equations of equilibrium of a concrete bar with FRP, which operates under the influence of an aggressive environment under conditions of a complex stress state, are also considered.


Author(s):  
Pengjian Zou ◽  
Xuming Niu ◽  
Xihui Chen ◽  
Zhigang Sun ◽  
Yan Liu ◽  
...  

2021 ◽  
pp. 41-45
Author(s):  
P.N. Kozlov

The criterion for appraisal of resistance of fatigue of structural material at action on it of repeatedly variables loads and static loads in the form of a bend or tensioncompression together with torsion, and also at action of loads, which create two-axis regular change of stress state in a dangerous point of material is constructed. The received criterion will acceptable be coordinated with the known experimental data. Keywords: dangerous point of material, regular cycle of loading, equivalent amplitude, equivalent average stress, chart of extreme amplitudes of stresses. [email protected]


2010 ◽  
Vol 160-162 ◽  
pp. 1425-1431
Author(s):  
Kun Yong Zhang ◽  
Yan Gang Zhang ◽  
Chi Wang

Most soil constitutive models were developed based on the traditional triaxial tests with isotropic assumption, in which the load is applied as the major principal stress direction and the other two principal stresses are symmetric. When such isotropic models are applied to practical analysis, stress induced anisotropy under complex stress state and the middle principal stress effects are often neglected, thus there are many disagreements between the calculated results and the infield testing data. To simulate the practical loading process, true triaxial tests were carried out on geomaterial under three-dimensional stress state. It was found that the stress induced anisotropy effects are remarkable and the middle principal stress effects are obvious because of the initial three-dimensional stress state. Such kind of stress-induced anisotropy could have important impact on the numerical analysis results and should be taken into consideration when developing the constitutive model.


2011 ◽  
Vol 361-363 ◽  
pp. 1422-1425
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The crack propagation law of 2.25Cr-1Mo steel with notched cylinder was researched under high temperature low cycle fatigue. The crack propagation life was viewed by fatigue experiment and the equivalent stress-strain on the crack tip was calculated by the ANSYS. The equivalent J-integral range which was computed by equivalent elastic and plastic strain ranges were employed to denote the fatigue crack propagation rate. The results showed that crack propagation law of this material under complex stress state can be characterized by equivalent J-integral ranges and the relation between da/dN and ΔJf is not influenced by the type of notch and the load strain range.


Sign in / Sign up

Export Citation Format

Share Document