Numerical Simulation of Supercritical Carbon Dioxide Critical Flow in the Nozzle Tube

Author(s):  
Zhou Yuan ◽  
Wang Yangle ◽  
Chen Jingtan ◽  
Xia Zhaoyang ◽  
Wang Junfeng

The supercritical carbon dioxide (S-CO2) Brayton gas turbine cycle has been studied as an efficient and cost-effective option for advanced power systems. One major safety issue for any power cycle is a pipe break and the associated discharge of the working fluid and subsequent decrease in system pressure. In this paper, an S-CO2 critical flow in the nozzle tube is analyzed numerically with fluent 15.0. The Redlich–Kwong real gas equation is selected to calculate carbon dioxide density and the standard k-epsilon turbulence model is selected. Experimental data are used as a benchmark to examine the capability of the current approach. Compared with experimental data, the simulation results overestimate the critical mass flux; the error range is between 15% and 25%. The simulation results show that as L/D increases, critical mass flow decreases. As stagnation temperature increases, critical mass flow decreases. The complex thermal hydraulic behavior in the nozzle tubes is analyzed. Three flow patterns in the nozzle tube during transient critical flow are obtained and discussed. From inlet to outlet of the tube, CO2 may undergo the following phases in turn: (1) supercritical phase; (2) supercritical phase—gas phase; (3) supercritical phase—gas phase—liquid phase. The simulation results are also helpful for further experimental and theoretical research.

Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


2021 ◽  
Author(s):  
Gholamhossein Sodeifian ◽  
Seyed Ali Sajadian ◽  
Fariba Razmimanesh ◽  
Seyed Mojtaba Hazaveie

Abstract One of the main steps in choosing the drug nanoparticle production processes by supercritical carbon dioxide (SC-CO2) is determining the solubility of the solid solute. For this purpose, the solubility of Ketoconazole (KTZ) in the SC-CO2, binary system, as well as in the SC-CO2-menthol (cosolvent), ternary system, was measured at 308–338 K and 12–30 MPa using the static analysis method. The KTZ solubility in the SC-CO2 ranged between 1.70×10− 6 and 8.02×10− 4, while drug solubility in the SC-CO2 with cosolvent varied from 2.7×10− 5 to 1.96×10− 4. This difference indicated the significant effect of menthol cosolvent on KTZ solubility in the SC-CO2. Moreover, KTZ solubilities in the two systems were correlated by several empirical and semiempirical models. Among them, Sodeifian et al., Bian et al., MST, and Bartle et al. models can more accurately correlate experimental data for the binary system than other used models. Also, the Sodeifian and Sajadian model well fitted the solubility data of the ternary system with AARD,%= 6.45, Radj= 0.995.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4174 ◽  
Author(s):  
Dorota Kostrzewa ◽  
Agnieszka Dobrzyńska-Inger ◽  
August Turczyn

The studies of solubility of the paprika extract with a high concentration of carotenoids in carbon dioxide under the pressure of 20–50 MPa and at temperatures of 313.15–333.15 K were carried out using the static method. The highest solubility of paprika extract was achieved at the temperature of 333.15 K and under the pressure of 50 MPa. The obtained experimental data were correlated with five density-based models, applied for prediction of solubility in the supercritical carbon dioxide (the Chrastil, del Valle and Aguilera, Adachi and Lu, Sparks et al. and Bian et al. models). The accuracy of particular models with reference to measurement results was specified with the average absolute relative deviation (AARD) and coefficient of determination (R2). Results showed that solubility calculated based on the selected models was compliant with experimental data.


2013 ◽  
Vol 360 ◽  
pp. 445-450 ◽  
Author(s):  
Dorota Kostrzewa ◽  
Agnieszka Dobrzyńska-Inger ◽  
Edward Rój

2016 ◽  
Vol 10 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Maria Y. Dwi ◽  
Jessica Julian ◽  
Jindrayani N. Putro ◽  
Adi T. Nugraha ◽  
Yi-Hsu Ju ◽  
...  

The solubility data of acetophenone in supercritical carbon dioxide (scCO2) were measured using a static method at several temperatures (313.15, 323.15, 333.15, and 343.15K) and pressures ranging from10 MPa to 28 MPa. The density based models (Chrastil and Del valle– Aguilera models) and the Peng-Robinson equation of state (PR-EOS) with quadratic and Stryjek-Vera combining rules were employed to correlate the experimental data. Good correlations between the calculated and experimental solubility data were obtained. The sum of squared errors (SSE) are 0.38 % and 0.37 % for Chrastil and Del Valle – Aguilera models, respectively; and 9.07 % for Peng-Robinson equation of state with quadratic combining rule and 4.00 % for Peng-Robinson equation of state with Stryjek-Vera combining rule.


2013 ◽  
Vol 34 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Karina Gurgenova ◽  
Rafał Bogeł-Łukasik ◽  
Paweł Wawrzyniak

Abstract Binary vapour-liquid equilibrium of thymoquinone and carbon dioxide at the isothermal conditions was carried out at temperature 323.15 K and pressures from 6 to 10 MPa. The experimental data were fitted to the Soave-Redlich-Kwong equation of state. Results could be used for selection of process parameters in separation of volatiles from raw oil or for evaluation of existing separation technologies.


Sign in / Sign up

Export Citation Format

Share Document