Low Load Operation Range Extension by Autothermal On-Board Syngas Generation

Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and unburned hydrocarbons emissions limits their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas (NG) and syngas mixtures is presented in this study. A mixture of NG, water vapor, and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of −30 vol % and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of NG and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit, and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed NG operation. For the second concept, an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.

Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and UHC emissions limit their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas and syngas mixtures are presented in this study. A mixture of natural gas, water vapor and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of ∼30 vol% and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of natural gas and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed natural gas operation. For the second concept an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.


2017 ◽  
Vol 1 ◽  
pp. D0HPA5 ◽  
Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

Abstract The low reactivity of natural gas leads to a sudden increase of carbon monoxide (CO) and unburned hydrocarbons (UHC) emissions below a certain load level, which limits the part load operation range of current utility gas turbines in combined cycle power plants (CCPP). The feasibility of catalytic autothermal syngas generation directly upstream of gas turbine burners to improve burn-out at low flame temperatures is studied in this paper. The adiabatic reformer is supplied with a mixture of natural gas, air and water and generates syngas with high reactivity, which results in better low-temperature combustion performance. Substitution of part of the natural gas by syngas provides the opportunity of lowering overall equivalence ratio in the combustion chamber and of extending the operation range towards lower minimum power output without violating emission limits. A generic gas turbine with a syngas generator is modelled by analytic equations to identify the possible operating window of a fuel processor constrained by pressure loss, low and high temperature limits and carbon formation. A kinetic study shows good conversion of methane to syngas with a high hydrogen share. A calculation of the one-dimensional laminar burning velocity of mixtures of syngas and methane and the assessment of the corresponding Damköhler number show the potential for lowering the minimum equivalence ratio with full burn-out by fuel processing. The study shows that such a fuel processor has a possible operating range despite the before mentioned constraints and it has potential to reduce the lowest possible load of gas turbines in terms of thermal power by 20%.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2191
Author(s):  
Thanh Dam Mai ◽  
Jaiyoung Ryu

The flow and heat-transfer attributes of gas turbines significantly affect the output power and overall efficiency of combined-cycle power plants. However, the high-temperature and high-pressure environment can damage the turbine blade surface, potentially resulting in failure of the power plant. Because of the elevated cost of replacing turbine blades, damaged blades are usually repaired through modification of their profile around the damage location. This study compared the effects of modifying various damage locations along the leading edge of a rotor blade on the performance of the gas turbine. We simulated five rotor blades—an undamaged blade (reference) and blades damaged on the pressure and suction sides at the top and middle. The Reynolds-averaged Navier–Stokes equation was used to investigate the compressible flow in a GE-E3 gas turbine. The results showed that the temperatures of the blade and vane surfaces with damages at the middle increased by about 0.8% and 1.2%, respectively. This causes a sudden increase in the heat transfer and thermal stress on the blade and vane surfaces, especially around the damage location. Compared with the reference case, modifications to the top-damaged blades produced a slight increase in efficiency about 2.6%, while those to the middle-damaged blades reduced the efficiency by approximately 2.2%.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

Volatile renewable energy sources induce power supply fluctuations. These need to be compensated by flexible conventional power plants. Gas turbines in combined cycle power plants adjust the power output quickly but their turn-down ratio is limited by the slow reaction kinetics, which leads to CO and unburned hydrocarbon emissions. To extend the turn-down ratio, part of the fuel can be converted to syngas, which exhibits a higher reactivity. By an increasing fraction of syngas in the fuel, the reactivity of the mixture is increased and total fuel mass flow and the power output can be reduced. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas (NG)/syngas mixtures was presented in a previous study (Baumgärtner, M. H., and Sattelmayer, T., 2017, “Low Load Operation Range Extension by Autothermal On-Board Syngas Generation,” ASME J. Eng. Gas Turbines Power, 140(4), p. 041505). The study at hand shows a mass-flow variation of the reforming process with mass flows, which allow for pure syngas combustion and further improvements of the two burner concepts which result in a more application-oriented operation. The first of the two burner concepts comprises a generic swirl stage with a central lance for syngas injection. Syngas is injected with swirl to avoid a negative impact on the total swirl intensity and nonswirled. The second concept includes a central swirl stage with an outer ring of jets. For this burner, syngas is injected in both stages to avoid NOx emissions from the swirl stage. Increased NOx emissions produced by NG combustion of the swirl pilot were reported in last year's paper. For both burners, combustion performance is analyzed by OH*-chemiluminescence and gaseous emissions. The lowest possible adiabatic flame temperature without a significant increase of CO emissions was 170–210 K lower for the syngas compared to low load pure NG combustion. This corresponds to a decrease of 15–20% in terms of thermal power.


Author(s):  
David Littlejohn ◽  
Robert K. Cheng ◽  
D. R. Noble ◽  
Tim Lieuwen

The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions, and the flowfield characteristics for adaptation to the combustion turbines in integrated gasification combined cycle clean coal power plants. The experiments were conducted in two facilities. Open atmospheric laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean blow-off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H2. Syngases with high H2 concentration have lower lean blow-off limits. From particle image velocimetry measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 450 K<T<505 K and 8 atm verified the operability of this concept at gas turbine conditions.


Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Author(s):  
Arthur Cohn ◽  
Mark Waters

It is important that the requirements and cycle penalties related to the cooling of high temperature turbines be thoroughly understood and accurately factored into cycle analyses and power plant systems studies. Various methods used for the cooling of high temperature gas turbines are considered and cooling effectiveness curves established for each. These methods include convection, film and transpiration cooling using compressor bleed and/or discharge air. In addition, the effects of chilling the compressor discharge cooling gas are considered. Performance is developed to demonstrate the impact of the turbine cooling schemes on the heat rate and specific power of Combined–Cycle power plants.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
Nikhil Dev ◽  
Gopal Krishan Goyal ◽  
Rajesh Attri ◽  
Naresh Kumar

In the present work, graph theory and matrix method is used to analyze some of the heat recovery possibilities with the newly available gas turbine engines. The schemes range from dual pressure heat recovery steam generation systems, to triple pressure systems with reheat in supercritical steam conditions. From the developed methodology, result comes out in the form of a number called as index. A real life operating Combined Cycle Power Plant (CCPP) is a very large and complex system. Efficiency of its components and sub-systems are closely intertwined and insuperable without taking the effect of others. For the development of methodology, CCPP is divided into six sub-systems in such a way that no sub-system is independent. Digraph for the interdependencies of sub-system is organized and converted into matrix form for easy computer processing. The results obtained with present methodology are in line with the results available in literature. The methodology is developed with a view that power plant managers can take early decision for selection, improvements and comparison, amongst the various options available, without having in-depth knowledge of thermodynamics analysis.


Sign in / Sign up

Export Citation Format

Share Document