Natural Gas–fired Gas Turbines and Combined Cycle Power Plants

Author(s):  
Paul Breeze
Author(s):  
Juan Pablo Gutierrez ◽  
Terry B. Sullivan ◽  
Gerald J. Feller

The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated Gasification Combined Cycle (IGCC) plants. The system uses a low heating value fuel such as coal or biomass that is gasified to produce a mixture of hydrogen and carbon monoxide. The potential for efficiency improvement and the decrease in emissions resulting from this process compared to coal-fired power plants are strong evidence to the argument that IGCC technology will be a key player in the future of power generation. In addition to new IGCC plants, and as a result of new emissions regulations, industry is looking at possibilities for retrofitting existing natural gas plants. This paper studies the feasibility of retrofitting existing gas turbines of Natural Gas Combined Cycle (NGCC) power plants to burn syngas, with a focus on the water/steam cycle design limitations and necessary changes. It shows how the gasification island processes can be treated independently and then integrated with the power block to make retrofitting possible. This paper provides a starting point to incorporate the gasification technology to current natural gas plants with minor redesigns.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


2015 ◽  
Vol 137 (12) ◽  
pp. 54-55
Author(s):  
Lee S. Langston

This article explains how combined cycle gas turbine (CCGT) power plants can help in reducing greenhouse gas from the atmosphere. In the last 25 years, the development and deployment of CCGT power plants represent a technology breakthrough in efficient energy conversion, and in the reduction of greenhouse gas production. Existing gas turbine CCGT technology can provide a reliable, on-demand electrical power at a reasonable cost along with a minimum of greenhouse gas production. Natural gas, composed mostly of methane, is a hydrocarbon fuel used by CCGT power plants. Methane has the highest heating value per unit mass of any of the hydrocarbon fuels. It is the most environmentally benign of fuels, with impurities such as sulfur removed before it enters the pipeline. If a significant portion of coal-fired Rankine cycle plants are replaced by the latest natural gas-fired CCGT power plants, anthropogenic carbon dioxide released into the earth’s atmosphere would be greatly reduced.


1992 ◽  
Vol 114 (2) ◽  
pp. 380-385 ◽  
Author(s):  
M. S. Johnson

This paper describes a procedure used to model the performance of gas turbines designed to fire natural gas (or distillate oil) when fired on medium-Btu fuel, such as coal-derived syngas. Results from such performance studies can be used in the design or analysis of Gasification Combined Cycle (GCC) power plants. The primary difficulty when firing syngas in a gas turbine designed for natural gas is the tendency to drive the compressor toward surge. If the gas turbine has sufficient surge margin and mechanical durability, Gas Turbine Evaluation code (GATE) simulations indicate that net output power can be increased on the order of 15 percent when firing syngas due to the advantageous increase in the ratio of the expander-to-compressor mass flow rates. Three classes of single-spool utility gas turbines are investigated spanning firing temperatures from 1985°F-2500°F (1358 K-1644 K). Performance simulations at a variety of part-load and ambient temperature conditions are described; the resulting performance curves are useful in GCC power plant studies.


Author(s):  
Anup Singh

In the 1970s, power generation from gas turbines was minimal. Gas turbines in those days were run on fuel oil, since there was a so-called “natural gas shortage”. The U.S. Fuel Use Act of 1978 essentially disallowed the use of natural gas for power generation. Hence there was no incentive on the part of gas turbine manufacturers to invest in the development of gas turbine technology. There were many regulatory developments in the 1980s and 1990s, which led to the rapid growth in power generation from gas turbines. These developments included Public Utility Regulatory Policy Act of 1978 (encouraging cogeneration), FERC Order 636 (deregulating natural gas industry), Energy Policy Act of 1992 (creating EWGs and IPPs) and FERC Order 888 (open access to electrical transmission system). There was also a backlash from excessive electric rates due to high capital recovery of nuclear and coal-fired plant costs caused by tremendous cost increase resulting from tightening NRC requirements for nuclear plants and significant SO2/NOx/other emissions controls required for coal-fired plants. During this period, rapid technology developments took place in the metallurgy, design, efficiency, and reliability of gas turbines. In addition, U.S. DOE contributed to these developments by encouraging research and development efforts in high temperature and high efficiency gas turbines. Today we are seeing a tremendous explosion of power generating facilities by electric utilities and Independent Power Producers (IPPs). A few years ago, Merchant Power (generation without power purchase agreements) was unheard of. Today it is growing at a very fast pace. Can this rapid growth be sustained? The paper will explore the factors that will play a significant role in the future growth of gas turbine-based power generation in the U.S. The paper will also discuss the methods and developments that could decrease the capital costs of gas turbine power plants resulting in the lowest cost generation compared to other power generation technologies.


Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and UHC emissions limit their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas and syngas mixtures are presented in this study. A mixture of natural gas, water vapor and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of ∼30 vol% and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of natural gas and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed natural gas operation. For the second concept an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.


2020 ◽  
Vol 5 (1) ◽  
pp. 066-075
Author(s):  
Ebigenibo Genuine Saturday ◽  
Celestine Ebieto Ebieto

Several cases of the need for continuous utilization of gas turbines for power production and why gas turbines will be relevant in the next 50 years in the Nigerian power sector are presented in this paper. Using 7 criteria; the cost of installation, operation and maintenance costs, levelized cost of electricity, capacity factor, the efficiency of energy conversion, power to size ratio/area coverage and environmental pollution, gas turbine operation was compared with wind and solar energy technologies. Gas turbine for power production appears to be more favourable in 5 out of the 7 criteria including lower installation cost which is a very important factor for poor and developing nations like Nigeria. The quantity of fuel for producing different quantities of power using gas turbines was estimated. Nigeria has huge proven reserves of natural gas which is the fuel for gas turbines. If we go for combined cycle power plants which have low specific fuel consumption (SFC), 50% of the natural gas reserves are enough to produce some 35 GW of electricity for over 50 years. The current rate of natural gas production can produce 27.06 GW of electricity at 0.06kg/s.MW sfc. It was also observed that the current installed power from gas turbines is too low compared to the power demand; hence, further installations are required. Pollution should not be an issue in installing more gas turbine plants because the gas turbine is a clean-burning engine and the present installed capacity is insignificant compared to what is obtainable in some advanced nations. The results in this work will guide gas turbine operators in planning for further installation of gas turbine power plants. The study does not rule out the need to exploit solar photovoltaic system and wind turbines in areas with high sunshine and high wind speeds respectively, for off-grid power production.


Author(s):  
Mark S. Johnson

This paper describes a procedure used to model the performance of gas turbines designed to fire natural gas (or distillate oil) when fired on medium-BTU fuel, such as coal-derived syngas. Results from such performance studies can be used in the design or analysis of Gasification Combined-Cycle (GCC) power plants. The primary difficulty when firing syngas in a gas turbine designed for natural gas is the tendency to drive the compressor toward surge. If the gas turbine has sufficient surge margin and mechanical durability, Gas Turbine Evaluation code (GATE) simulations indicate that net output power can be increased on the order of 15% when firing syngas due to the advantageous increase in the ratio of the expander-to-compressor mass flow rates. Three classes of single-spool utility gas turbines are investigated spanning firing temperatures from 1985 F to 2500 F (1358 K to 1644 K). Performance simulations at a variety of part-load and ambient temperature conditions are described; the resulting performance curves are useful in GCC power plant studies.


Author(s):  
Nikolett Sipöcz ◽  
Klas Jonshagen ◽  
Mohsen Assadi ◽  
Magnus Genrup

The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably.


Author(s):  
V. A. Bulanin

Abstract. Aim. Despite the obvious expediency of their widespread implementation, gas turbine (GT) and combined cycle gas turbine (CCGT) plants were only used in limited quantities in the former USSR and CIS countries. Due to the exhaustion of possibilities to increase the fuel use efficiency and return on investment (ROI) in steam-turbine combined heat and power (CHP) plants, the development of GT and CCGT plants becomes an urgent problem. In current global practice, the primary fuel for gas turbines and combined cycle gas turbines is natural gas. However, until recently, there has been a lack of experience in the design, construction and operation of GT and CCGT plants in the CIS countries. Method. Due to the ad hoc nature of research in this area, it was necessary to systematise the results of existing studies and assess the state of research at the world level taking regional characteristics into account. Results. The article presents the main considerations and potential effectiveness of the use of gas turbines. Basic gas turbine construction schemes are investigated along with their techno-economic characteristics and an assessment of their comparative utility. Conclusion. Considering the widespread availability of natural gas, it is recommended that gas turbine and combined-cycle plants be installed as part of the process of technical re-equipment in the fuel and energy complex, industry, agriculture and municipal energy sectors as part of the design and construction of new energy sources in the light of positive world experience and the current level of development of gas turbine technologies. Ubiquitous implementation of gas turbine units in the centres supplying heat and electric loads will reduce the regional economy’s need for energy fuel and ensure an increase in energy capacity without the need to construct new complex and uneconomic steam turbine power plants. 


Sign in / Sign up

Export Citation Format

Share Document