Flow-Induced Vibration and Hydrokinetic Power Conversion of Two Staggered Rough Cylinders for 2.5 × 104 < Re < 1.2 × 105

Author(s):  
Wanhai Xu ◽  
Chunning Ji ◽  
Hai Sun ◽  
Wenjun Ding ◽  
Michael M. Bernitsas

Flow-induced vibration (FIV), primarily vortex-induced vibrations (VIV), and galloping have been used effectively to convert hydrokinetic energy to electricity in model-tests and field-tests by the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan. It is known that the response of cylinders with passive turbulence control (PTC) undergoing vortex shedding differs from the oscillation of smooth cylinders in a similar configuration. Additional investigation on the FIV of two elastically mounted circular cylinders in a staggered arrangement with low mass ratio in the TrSL3 flow-regime is required and is contributed by this paper. The two PTC-cylinders were allowed to oscillate in the transverse direction to the oncoming fluid flow in a recirculating water channel. The cylinder model with a length of 0.895 m and a diameter of 8.89 cm, a mass ratio of 1.343 was used in the tests. The Reynolds number was in the range of 2.5 × 104 < Re < 1.2 × 105, which is a subset of the TrSL3 flow-regime. The center-to-center longitudinal and transverse spacing distances were T/D = 2.57 and S/D = 1.0, respectively. The spring stiffness values were in the range of 400 < K (N/m) <1200. The values of harnessing damping ratio tested were ζharness = 0.04, 0.12 and 0.24. For the values tested, the experimental results indicate that the response of the upstream cylinder is similar to the single cylinder. The downstream cylinder exhibits more complicated vibrations. In addition, the oscillation system of two cylinders with stiffer spring and higher ζharness could initiate total power harness at a higher flow velocity and obtain more power.

Author(s):  
Wanhai Xu ◽  
Chunning Ji ◽  
Hai Sun ◽  
Wenjun Ding ◽  
Michael M. Bernitsas

Flow-induced vibration (FIV), primarily vortex-induced vibrations (VIV) and galloping have been used effectively to convert hydrokinetic energy to electricity in model-tests and field-tests by the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan. The developed device, called VIVACE (VIV for Aquatic Clean Energy), harnesses hydrokinetic energy from river and ocean flows. One of the methods used to improve its efficiency of harnessed power efficiency is Passive Turbulence Control (PTC). It is a turbulence stimulation method that has been used to alter FIV of a cylinder in a steady flow. FIV of elastically mounted cylinders with PTC differs from the oscillation of smooth cylinders in a similar configuration. Additional investigation of the FIV of two elastically mounted circular cylinders in staggered arrangement with a low mass ratio in the TrSL3 flow-regime is required and is contributed by this paper. A series of experimental studies on FIV of two PTC cylinders in staggered arrangement were carried out in the recirculating water channel of MRELab. The two cylinders were allowed to oscillate in the transverse direction to the oncoming fluid flow. Cylinders tested have, diameter D = 8.89cm, length L = 0.895m and mass ratio m* = 1.343. The Reynolds number was in the range of 2.5×104<Re<1.2×105, which is a subset of the TrSL3 flow-regime. The center-to-center longitudinal and transverse spacing distances were T/D = 2.57 and S/D = 1.0, respectively. The spring stiffness values were in the range of 400<K<1200N/m. The values of harnessing damping ratio tested were ζharness = 0.04, 0.12, 0.24. For the values tested, the experimental results indicate that the response of the 1st cylinder is similar to a single cylinder; however more complicated vibration of the 2nd cylinder is observed. In addition, the oscillation system of two cylinders with stiffer spring and higher ζharness could initiate total power harness at a larger flow velocity and harness much higher power. These findings are very meaningful and important for hydrokinetic energy conversion.


Author(s):  
Chunning Ji ◽  
Wanhai Xu ◽  
Hai Sun ◽  
Michael M. Bernitsas

Flow-induced vibrations of two elastically mounted circular cylinders in staggered arrangement were experimentally investigated. The Reynolds number range for all experiments (2.5×104<Re<1.2×105) was in the TrSL3 flow regime. The oscillator parameters selected were: mass ratio m* = 1.343, spring stiffness K = 250N/m, and damping ratio ζ = 0.02. The experiments were conducted in the Low Turbulence Free Surface Water (LTFSW) Channel in the MRELab of the University of Michigan. A closed-loop, virtual spring-damper system (Vck) was used to facilitate quick and accurate parameter setting. Based on the characteristics of the displacement response, five vibration patterns were identified and their corresponding regions in the parametric plane of the in-flow spacing (1.57<L/D<4.57) and transverse cylinder-spacing (0<T/D<2) were defined. The hydrodynamic forces and frequency characteristics of the vibration response are discussed as well.


Author(s):  
Chunning Ji ◽  
Wanhai Xu ◽  
Hai Sun ◽  
Rui Wang ◽  
Chunhui Ma ◽  
...  

Flow-induced vibrations (FIVs) of two elastically mounted circular cylinders in staggered arrangement were experimentally investigated. The Reynolds number range for all experiments (2.5 × 104 < Re < 1.2 × 105) was in the transition in shear layer 3 (TrSL3) flow regime. The oscillator parameters selected were: mass ratio m* = 1.343 (ratio of oscillating mass to displaced fluid mass), spring stiffness K = 250 N/m, and damping ratio ζ = 0.02. The experiments were conducted in the low turbulence free surface water (LTFSW) channel in the MRELab of the University of Michigan. A closed-loop, virtual spring–damper system (Vck) was used to facilitate quick and accurate parameter setting. Based on the characteristics of the displacement response, five vibration patterns were identified and their corresponding regions in the parametric plane of the in-flow spacing (1.57 < L/D < 4.57) and transverse cylinder spacing (0 < T/D < 2) were defined. The hydrodynamic forces and frequency characteristics of the vibration response are also discussed.


Author(s):  
Hongrae Park ◽  
Michael M. Bernitsas ◽  
Che-Chun Chang

Passive turbulence control (PTC) in the form of two straight roughness strips with variable width, and thickness about equal to the boundary layer thickness, is used to modify the flow-induced motions (FIM) of a rigid circular cylinder. The cylinder is supported by two end-springs and the flow is in the TrSL3, high-lift, regime. The PTC-to-FIM Map, developed in previous work, revealed zones of weak suppression, strong suppression, hard galloping, and soft galloping. In this paper the sensitivity of the PTC-to-FIM Map to: (a) the width of PTC covering, (b) PTC covering a single or multiple zones, (c) PTC being straight or staggered is studied experimentally. Experiments are conducted in the Low Turbulence Free Surface Water Channel of the University of Michigan. Fixed parameters are: cylinder diameter D = 8.89cm, m* = 1.725, spring stiffness K = 763N/m, aspect ratio l/D = 10.29, and damping ratio ζ = 0.019. Variable parameters are: circumferential PTC location αPTC ∈ [0°−180°], Reynolds number Re ∈ [30,000–120,000], flow velocity U ∈ [0.36m/s–1.45m/s]. Measured quantities are: amplitude ratio A/D, frequency ratio fosc/fn,w, and synchronization range. As long as the roughness distribution is limited to remain within a zone, the width of the strips does not affect the FIM response. When multiple zones are covered, the strong suppression zone dominates the FIM.


2018 ◽  
Vol 851 ◽  
pp. 317-343 ◽  
Author(s):  
J. Zhao ◽  
K. Hourigan ◽  
M. C. Thompson

While it has been known that an afterbody (i.e. the structural part of a bluff body downstream of the flow separation points) plays an important role affecting the wake characteristics and even may change the nature of the flow-induced vibration (FIV) of a structure, the question of whether an afterbody is essential for the occurrence of one particular common form of FIV, namely vortex-induced vibration (VIV), still remains. This has motivated the present study to experimentally investigate the FIV of an elastically mounted forward- or backward-facing D-section (closed semicircular) cylinder over the reduced velocity range $2.3\leqslant U^{\ast }\leqslant 20$, where $U^{\ast }=U/(f_{nw}D)$. Here, $U$ is the free-stream velocity, $D$ the cylinder diameter and $f_{nw}$ the natural frequency of the system in quiescent fluid (water). The normal orientation with the body’s flat surface facing upstream is known to be subject to another common form of FIV, galloping, while the reverse D-section with the body’s curved surface facing upstream, due to the lack of an afterbody, has previously been reported to be immune to VIV. The fluid–structure system was modelled on a low-friction air-bearing system in conjunction with a recirculating water channel facility to achieve a low mass ratio (defined as the ratio of the total oscillating mass to that of the displaced fluid mass). Interestingly, through a careful overall examination of the dynamic responses, including the vibration amplitude and frequency, fluid forces and phases, our new findings showed that the D-section exhibits a VIV-dominated response for $U^{\ast }<10$, galloping-dominated response for $U^{\ast }>12.5$, and a transition regime with a VIV–galloping interaction in between. Also observed for the first time were interesting wake modes associated with these response regimes. However, in contrast to previous studies at high Reynolds number (defined by $Re=UD/\unicode[STIX]{x1D708}$, with $\unicode[STIX]{x1D708}$ the kinematic viscosity), which have showed that the D-section was subject to ‘hard’ galloping that required a substantial initial amplitude to trigger, it was observed in the present study that the D-section can gallop softly from rest. Surprisingly, on the other hand, it was found that the reverse D-section exhibits pure VIV features. Remarkable similarities were observed in a direct comparison with a circular cylinder of the same mass ratio, in terms of the onset $U^{\ast }$ of significant vibration, the peak amplitude (only approximately 6 % less than that of the circular cylinder), and also the fluid forces and phases. Of most significance, this study shows that an afterbody is not essential for VIV at low mass and damping ratios.


Author(s):  
Hongrae Park ◽  
Eun Soo Kim ◽  
Michael M. Bernitsas

Passive turbulence control (PTC) in the form of two straight roughness strips with variable width, and thickness about equal to the boundary layer thickness, is used to modify the flow-induced motions (FIM) of a rigid circular cylinder. The cylinder is supported by two end springs and the flow is in the TrSL3, high-lift, regime. The PTC-to-FIM Map, developed in the previous work, revealed zones of weak suppression (WS), strong suppression (SS), hard galloping (HG), and soft galloping (SG). In this paper, the sensitivity of the PTC-to-FIM map to: (a) the width of PTC covering, (b) PTC covering a single or multiple zones, and (c) PTC being straight or staggered is studied experimentally. Experiments are conducted in the low turbulence free surface water channel of the University of Michigan, Ann Arbor, MI. Fixed parameters are: cylinder diameter D = 8.89 cm, m* = 1.725, spring stiffness K = 763 N/m, aspect ratio l/D = 10.29, and damping ratio ζ = 0.019. Variable parameters are circumferential PTC location αPTC∈ (0–180 deg), Reynolds number Re ∈ (30,000–120,000), flow velocity U∈ (0.36–1.45 m/s). Measured quantities are amplitude ratio A/D, frequency ratio fosc/fn,w, and synchronization range. As long as the roughness distribution is limited to remain within a zone, the width of the strips does not affect the FIM response. When multiple zones are covered, the strong suppression zone dominates the FIM.


2014 ◽  
Author(s):  
M. Mobassher Tofa ◽  
Adi Maimun ◽  
Yasser M. Ahmed ◽  
Saeed Jamie

Mass ratio is an important parameter that influences the vortex-induced vibration of circular cylinder, especially for a two degree of freedom system. Numerical simulations have been performed for two equal-diameter cylinders with different mass ratios in tandem arrangement which are subjected to uniform flows in subcritical flow regime. The distances between the upstream and downstream cylinders were three and four times of the cylinder diameter. The purpose of this study is to investigate the effect of upstream cylinder’s mass ratio on the vibration of downstream cylinder. The shear stress transport detached eddy turbulence model has been used for simulating the turbulent flow around the two cylinders. The numerical results of a single cylinder subjected to 2DOF vibration have been compared with the experimental results available for such cases to validate the present study.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5148
Author(s):  
Md. Mahbub Alam

Flow-induced vibration is a canonical issue in various engineering fields, leading to fatigue or immediate damage to structures. This paper numerically investigates flow-induced vibrations of a cylinder interacting with the wake of another cylinder at a Reynolds number Re = 150. It sheds light on the effects of mass ratio m*, damping ratio, and mass-damping ratio m*ζ on vibration amplitude ratio A/D at different reduced velocities Ur and cylinder spacing ratios L/D = 1.5 and 3.0. A couple of interesting observations are made. The m* has a greater influence on A/D than ζ although both m* and ζ cause reductions in A/D. The m* effect on A/D is strong for m* = 2–16 but weak for m* > 16. As opposed to a single isolated cylinder case, the mass-damping m*ζ is not found to be a unique parameter for a cylinder oscillating in a wake. The vortices in the wake decay rapidly at small ζ. Alternate reattachment of the gap shear layers on the wake cylinder fuels the vibration of the wake cylinder for L/D = 1.5 while the impingement and switch of the gap vortices do the same for L/D = 3.0.


2021 ◽  
Vol 225 ◽  
pp. 108806
Author(s):  
Qunfeng Zou ◽  
Lin Ding ◽  
Rui Zou ◽  
Hao Kong ◽  
Haibo Wang ◽  
...  

1980 ◽  
Vol 7 (4) ◽  
pp. 614-620
Author(s):  
J. S. Kennedy ◽  
D. J. Wilson ◽  
P. F. Adams ◽  
M. Perlynn

This paper presents the results of full-scale field tests on two steel guyed latticed towers. The towers were approximately 83 m in height, were guyed at three levels, and were of bolted angle construction. The observed results consist of the natural frequencies of the first two modes of vibration as well as the damping ratio for the first mode. The observed results are compared with analytical predictions and observations made concerning the contributions of structural and cable action to the damping ratio.


Sign in / Sign up

Export Citation Format

Share Document