Band-Gap Properties of Elastic Metamaterials With Inerter-Based Dynamic Vibration Absorbers

2018 ◽  
Vol 85 (7) ◽  
Author(s):  
Xiang Fang ◽  
Kuo-Chih Chuang ◽  
Xiaoling Jin ◽  
Zhilong Huang

In this paper, inerter-based dynamic vibration absorbers (IDVAs) are applied in elastic metamaterials to broaden low-frequency band gaps. A discrete mass-spring lattice system and a distributed metamaterial beam carrying a periodic array of IDVAs are, respectively, considered. The IDVA consists of a spring and an inerter connected to a traditional mass-spring resonator. Compared to the traditional resonators, the special designed IDVAs generate two local-resonance (LR) band gaps for the discrete lattice system, a narrow low-frequency band gap and a wider high-frequency one. For the distributed IDVA-based metamaterial beam, in addition to the generated two separated LR band gaps, the Bragg band gap can also be significantly broadened and the three band gaps are very close to each other. Being able to amplify inertia, the IDVAs can be relatively light even operated for opening up low-frequency band gaps. When further introducing a dissipative damping mechanism into the IDVA-based metamaterials, the two close-split LR band gaps in the lattice system are merged into one wide band gap. As for the metamaterial beam with the dissipative IDVAs, an even wider band gap can be acquired due to the overlap of the adjacent LR and Bragg-scattering band gaps.

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Y. Y. Chen ◽  
G. L. Huang ◽  
C. T. Sun

Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We first investigated dispersion curves and band gap control of an active mass-in-mass lattice system. The unit cell of the mass-in-mass lattice system consists of the inner masses connected by active linear springs to represent negative capacitance piezoelectric shunting. It was demonstrated that the band gaps can be actively controlled and tuned by varying effective stiffness constant of the linear spring through appropriately selecting the value of negative capacitance. The promising application was then demonstrated in the active elastic metamaterial plate integrated with the negative capacitance shunted piezoelectric patches for band gap control of both the longitudinal and bending waves. It can be found that the location and the extent of the induced band gap of the elastic metamaterial can be effectively tuned by using shunted piezoelectric patch with different values of negative capacitance, especially for extremely low-frequency cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Li ◽  
Sifeng Zhang ◽  
Liyong Gao ◽  
Wei Huang ◽  
Zhaoxin Liu

Locally resonant phononic crystals (LRPCs) beam is characterized by the band gaps; some frequency ranges within which flexural waves cannot propagate freely. So, the LRPCs beam can be used for noise or vibration isolation. In this paper, a LRPCs beam with distributed oscillators is proposed, and the general formula of band gaps and transmission spectrum are derived by the transfer matrix method (TMM) and spectrum element method (SEM). Subsequently, the parameter effects on band gaps are investigated in detail. Finally, a rubber concrete beam is designed to demonstrate the application of distributed LRPCs beam in civil engineering. Results reveal that the distributed LRPCs beam has multifrequency band gaps and the number of the band gaps is equal to that of the oscillators. Compared with others, the distributed LRPCs beam can reduce the stress concentration when subjected to vibration. The oscillator interval has no effect on the band gaps, which makes it more convenient to design structures. Individual changes of oscillator mass or stiffness affect the band gap location and width. When the resonance frequency of oscillator is fixed, the starting frequency of the band gap remains constant, and increasing oscillator mass of high-frequency band gap widens the high-frequency band gap, while increasing oscillator mass of low-frequency gap widens both high-frequency and low-frequency band gaps. External loads, such as the common uniform spring force provided by foundation in civil engineering, are conducive to the band gap, and when the spring force increases, all the band gaps are widened. Taken together, a configuration of LRPCs rubber concrete beam is designed, and it shows good isolation on the vibration induced by the railway. By the presented design flow chart, the research can serve as a reference for vibration isolation of LRPCs beams in civil engineering.


1975 ◽  
Vol 97 (1) ◽  
pp. 88-93 ◽  
Author(s):  
J. C. Snowdon

Platelike dynamic vibration absorbers of novel design are described, and optimum values of their tuning and damping parameters are specified in graphical form. The dynamic absorbers are assumed to comprise either a circular or an annular damped plate that is loaded at its outer perimeter by a rigid annular mass. The plates, which act as combined “spring-and-damper” components for the absorber systems considered, are attached either at their midpoint or around their inner perimeter to the vibrating item or structure of concern. The platelike absorbers are shown to be very effective in suppressing the transmissibility at resonance (1) across a mass-spring vibrator, and (2) across circular and rectangular plates that have small internal damping and that are used to simulate bulkheads and panels. The platelike absorbers have the advantages of mechanical simplicity and planar geometry for compact flush-mounted application.


2021 ◽  
pp. 095745652110004
Author(s):  
Preeti Gulia ◽  
Arpan Gupta

A mass in a mass locally resonant system has been studied using a numerical and analytical method. This study is performed to compute the band gap and transmission coefficient of a mass–spring locally resonant system. A locally resonant structure is a periodic structure which exhibits negative effective properties in a certain frequency band and reveals band gaps below Bragg’s frequency. In this work, two substructures are attached with main mass so that the system will act as two masses in a mass system. It is found that the presented structure shows two band gaps below 500 Hz with negative effective properties. Addition of a third substructure with the main mass provides an additional band gap at low frequency. The position and width of band gaps can be tuned by changing the values of masses and stiffness.


2015 ◽  
Vol 53 (9) ◽  
pp. 1296-1314 ◽  
Author(s):  
Shengyang Zhu ◽  
Jizhong Yang ◽  
Hua Yan ◽  
Longqing Zhang ◽  
Chengbiao Cai

2019 ◽  
Vol 86 (1) ◽  
pp. 10901 ◽  
Author(s):  
Hongxing Liu ◽  
Jiu Hui Wu

In this paper, viscoelastic multi-resonator mechanism for broadening low-frequency band-gaps of acoustic metamaterials is investigated. Firstly, the metamaterial unit consists of dual-mass and dual-viscoelasticity is proposed which can generate multiple resonances to form multiple band-gaps, and further the broadened band-gaps are realized by modulating the effect of the viscoelasticity. Secondly, for the dual-viscoelasticity, the band-gaps and transmission spectrum under the cases of with the consistent and inconsistent viscoelasticity are calculated. Comparing with the consistent case, by adjusting the viscoelasticity in the inconsistent case, the storage modulus changes the fastest and obtains a smaller and a larger elastic modulus at the corresponding starting frequency and ending frequency of the band-gap, in which the band-gap can be broadened and shifted to the low frequency since the resonant frequency is determined by the elastic modulus, and for the loss modulus, it has little effects on the width of the band-gap, but has great influence on the transmission coefficient. Thirdly, by adjusting the inconsistent viscoelastic parameters based on the above rules, the band width is increased by 1.7 times (1.3 times for the absolute band width) than the consistent structure and the band-gap is shifted to the low frequency by 31% (about 345 Hz). The viscoelastic multi-resonator mechanism can be used to practical applications of viscoelastic metamaterials.


Sign in / Sign up

Export Citation Format

Share Document