scholarly journals Mechanical Behavior of Silicon Carbide Under Static and Dynamic Compression

Author(s):  
D. Zhang ◽  
L. G. Zhao ◽  
A. Roy

This paper compared the mechanical behavior of 6H SiC under quasi-static and dynamic compression. Rectangle specimens with a dimension of 3 × 3 × 6 mm3 were used for quasi-static compression tests under three different loading rates (i.e., 10−5/s, 10−4/s, and 10−3/s). Stress–strain response showed purely brittle behavior of the material which was further confirmed by scanning electron microscopy (SEM)/transmission electron microscopy (TEM) examinations of fractured fragments. For dynamic compression, split Hopkinson pressure bar (SHPB) tests were carried out for cubic specimens with a dimension of 6 × 6 × 4 mm3. Stress–strain curves confirmed the occurrence of plastic deformation under dynamic compression, and dislocations were identified from TEM studies of fractured pieces. Furthermore, JH2 model was used to simulate SHPB tests, with parameters calibrated against the experimental results. The model was subsequently used to predict strength and plasticity-related damage under various dynamic loading conditions. This study concluded that, under high loading rate, silicon carbide (SiC) can deform plastically as evidenced by the development of nonlinear stress–strain response and also the evolution of dislocations. These findings can be explored to control the brittle behavior of SiC and benefit end users in relevant industries.

2014 ◽  
Author(s):  
V. S. Brooks ◽  
Y. B. Guo

Magnesium-Calcium (Mg-Ca) alloy is an emerging metallic biomaterial for manufacturing biodegradable orthopedic implants. However, very few studies have been conducted on mechanical properties of the bi-phase Mg-Ca alloy, especially at the high strain rates often encountered in manufacturing processes. The mechanical properties are critical to design and manufacturing of Mg-Ca implants. The objective of this study is to study the microstructural and mechanical properties of Mg-Ca0.8 (wt %) alloy. Both elastic and plastic behaviors of the Mg-Ca0.8 alloy were characterized at different strains and strain rates in quasi-static tension and compression testing as well as dynamic split-Hopkinson pressure bar (SHPB) testing. It has been shown that Young’s modulus of Mg-Ca0.8 alloy in quasi-static compression is much higher than those at high strain rates. Yield strength and ultimate strength of the material are very sensitive to strain rates and increase with strain rate in compression. Strain softening also occurs at large strains in dynamic compression. Furthermore, quasi-static mechanical behavior of the material in tension is very different from that in compression. The stress-strain data was repeatable with reasonable accuracy in both deformation modes. In addition, a set of material constants for the internal state variable plasticity model has been obtained to model the dynamical mechanical behavior of the novel metallic biomaterial.


2010 ◽  
Vol 658 ◽  
pp. 193-196
Author(s):  
Masakazu Tane ◽  
Tae Kawashima ◽  
Keitaro Horikawa ◽  
Hidetoshi Kobayashi ◽  
Hideo Nakajima

Dynamic and quasi-static compression tests were conducted on lotus-type porous iron with porosity of about 50% using the split Hopkinson pressure bar method and universal testing machine, respectively. In the dynamic compression parallel to the pore direction, a plateau stress region appears where deformation proceeds at nearly constant stress, while the plateau stress region does not appear in the quasi-static compression. The plateau stress region is probably caused by the buckling deformation of matrix iron which occurs only in the dynamic compression. In contrast, the compression perpendicular to the orientation direction of pores exhibits no plateau-stress regions in the both dynamic and quasi-static compression.


2013 ◽  
Vol 742 ◽  
pp. 237-242 ◽  
Author(s):  
Mostafa Fakharifar ◽  
Zhi Bin Lin ◽  
Cheng Lin Wu ◽  
Shruti Mahadik-Khanolkar ◽  
Nicholas Leventis ◽  
...  

Due to their exceptional mechanical properties,xerogels attract increasing attention forstructural applications. In this study, the mechanical behavior of two types of polymeric xerogelsis investigated. The excellent energy-absorbing capability of those xerogelsis demonstrated by their stress-strain relations with respect to their microstructure determined withscanning electron microscopy (SEM). A pilot study on the effects of xerogellayers in an FRP system for concrete confinementis conducted.Test results clearly indicatedthat the proposed multi-layer systemcan significantly increase the ductility of confined concrete.


2014 ◽  
Vol 566 ◽  
pp. 122-127
Author(s):  
Takayuki Kusaka ◽  
Takanori Kono ◽  
Yasutoshi Nomura ◽  
Hiroki Wakabayashi

A novel experimental method was proposed for characterizing the compressive properties of composite materials under impact loading. Split Hopkinson pressure bar system was employed to carry out the dynamic compression tests. The dynamic stress-strain relations could be precisely estimated by the proposed method, where the ramped input, generated by the plastic deformation of a zinc buffer, was effective to reduce the oscillation of the stress field in the specimen. The longitudinal strain of gage area could be estimated from the nominal deformation of gage area, and consequently the failure process could be grasped in detail from the stress-strain relation. The dynamic compressive strength of the material was slightly higher than the static compressive strength. In addition, the validity of the proposed method was confirmed by the computational and experimental results.


2012 ◽  
Vol 525-526 ◽  
pp. 261-264
Author(s):  
Y.Z. Guo ◽  
X. Chen ◽  
Xi Yun Wang ◽  
S.G. Tan ◽  
Z. Zeng ◽  
...  

The mechanical behavior of two composites, i.e., CF3031/QY8911 (CQ, hereafter in this paper) and EW100A/BA9916 (EB, hereafter in this paper), under dynamic loadings were carefully studied by using split Hopkinson pressure bar (SHPB) system. The results show that compressive strength of CQ increases with increasing strain-rates, while for EB the compressive strength at strain-rate 1500/s is lower then that at 800/s or 400/s. More interestingly, most of the stress strain curves of both of the two composites are not monotonous but exhibit double-peak shape. To identify this unusual phenominon, a high speed photographic system is introduced. The deformation as well as fracture characteristics of the composites under dynamic loadings were captured. The photoes indicate that two different failure mechanisms work during dynamic fracture process. The first one is axial splitting between the fiber and the matrix and the second one is overall shear. The interficial strength between the fiber and matrix, which is also strain rate dependent, determines the fracture modes and the shape of the stress/strain curves.


Author(s):  
Abdelhakim Aldoshan ◽  
D. P. Mondal ◽  
Sanjeev Khanna

The mechanical behavior of closed-cell aluminum foam composites under different compressive loadings has been investigated. Closed-cell aluminum foam composites made using the liquid metallurgy route were reinforced with multiwalled carbon nanotubes (CNTs) with different concentrations, namely, 1%, 2%, and 3% by weight. The reinforced foams were experimentally tested under dynamic compression using the split Hopkinson pressure bar (SHPB) system over a range of strain rates (up to 2200 s−1). For comparison, aluminum foams were also tested under quasi-static compression. It was observed that closed-cell aluminum foam composites are strain rate sensitive. The mechanical properties of CNT reinforced Al-foams, namely, yield stress, plateau stress, and energy absorption capacity are significantly higher than that of monolithic Al-foam under both low and high strain rates.


2010 ◽  
Vol 446 ◽  
pp. 73-82 ◽  
Author(s):  
Mostapha Tarfaoui ◽  
S. Choukri ◽  
A. Neme

The mechanical properties of E-glass/epoxy composite at high strain rates are important in evaluating this kind of composite under dynamic and impulsive loading. The in-plane and out-of-plane compressive properties at strain rates from 300 to 2500 s-1 were tested with split Hopkinson pressure bar. Samples were tested in the thickness as well as in-plane direction for seven fibre orientations: 0°, 20°, 30°, 45°, 60°, 70° and 90°. The kinetics of damage and the failure modes were identified using a high-speed photography, infrared camera, optical techniques and a scanning electron microscope. Results of the study were analyzed in terms of maximum stress, Strain at maximum stress, failure modes, damage history and fibres orientation effects. From the experimental data, the stress-strain curves, compressive stiffness, and compressive strain of the composite are rate-sensitive in in-plane and out-of-plane compressive directions. The failure and damage mechanisms are implicitly related to the rise in temperature during static and dynamic compression.


2014 ◽  
Vol 19 (4) ◽  
pp. 1139-1149 ◽  
Author(s):  
Taesik Kim ◽  
Jin-tae Han ◽  
Wanjei Cho

Sign in / Sign up

Export Citation Format

Share Document