Forced Convective Heat Transfer in a Channel Filled With a Functionally Graded Metal Foam Matrix

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Xiaohui Bai ◽  
Fujio Kuwahara ◽  
Moghtada Mobedi ◽  
Akira Nakayama

Fully developed forced convective heat transfer within a channel filled with a functionally graded metal foam matrix was investigated analytically for the case of constant wall heat flux. A series of functionally graded metal foam matrices of the same mass (i.e., the same solidity) were examined in views of their heat transfer performances. The porosity either increases or decreases toward the heated wall following a parabolic function. Among the metal foam matrices of the same mass, the maximum heat transfer coefficient exists for the case in which the porosity decreases toward the heated wall (i.e., more metal near the wall). The heat transfer coefficients in such channels filled with a functionally graded metal foam matrix are found 20–50% higher than that expected from the increase in the effective thermal conductivity. Hence, functionally graded metal foam matrices are quite effective to achieve substantially high heat transfer coefficient with an acceptable increase in pressure drop.

Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


Author(s):  
Seyyed Shahabeddin Azimi ◽  
Mansour Kalbasi ◽  
Mohammad Hosain Namazi

Nanofluid is a suspension of nanoparticles (solid particles with diameters below 100 nm) in a conventional base fluid with significantly improved heat transfer characteristics compared to the original fluid. The heat transfer coefficient is a quantitative characteristic of the convective heat transfer. The purpose of this paper is to study the effect of the nanoparticle size (diameter) on the heat transfer coefficient of forced convective heat transfer of nanofluid in the fully developed laminar region of a horizontal tube. Using thermal conductivity model which is a function of the nanoparticle size, flow of a nanofluid (water + Al 2 O 3) in a circular tube submitted to a constant wall temperature is numerically investigated with two particle sizes of 11 nm and 47 nm. The calculated results show that the nanoparticle size does not significantly affect the heat transfer coefficient, however, the heat transfer coefficient decreases as the particle size increases.


Author(s):  
Ribhu Bhatia ◽  
Sambit Supriya Dash ◽  
Vinayak Malhotra

Abstract Systematic experimentation was carried out on forced convection heat transfer apparatus under varying non-linear flow conditions to understand the energy transfer as heat, with the purpose of enhancing performance of numerous engineering applications. Plate orientations, types of enclosures (solid, meshed, perforated), flow velocity variations etc. are taken as governing parameters to effect convective heat transfer phenomenon which is perceived as deviations in value of heat transfer coefficient. RV zonal system is utilized to simplify the fundamental understanding of heat transfer coefficient variation with surface orientation under varying flow field. The objectives of this work are as follows: 1) To establish relative effectiveness of forced convective heat transfer under varying flow field. 2) To investigate the implications of varying shapes and sizes of perforations on confined forced convective heat transfer. To understand the controlling mechanism and role of key controlling parameters.


2014 ◽  
Vol 875-877 ◽  
pp. 1630-1636 ◽  
Author(s):  
Ozgen Acikgoz ◽  
Olcay Kincay ◽  
Zafer Utlu

Decreasing energy consumption and advancing thermal comfort are the most important aims of building engineering. Previously reported studies by many researchers have found that different usages of convective heat transfer coefficient (CHTC) correlations in heating system simulations have considerable impacts on calculated heating load in buildings. Hence, correct utilization of CHTCs in real size room enclosures has great importance for both energy consumption and thermal comfort. In this study, a modeled room was numerically heated from one vertical wall and cooled from the opposite wall in order to create a real room simulation. While cooled wall simulate heat losses of the room, heated wall simulates the heat source of enclosure. Effects of heated and cooled wall temperatures and characteristic length on CHTC and Nusselt number in the enclosure were numerically investigated for two (2-D) and three dimensional (3-D) modeling states. CHTCs and Nusselt numbers of a real size room with the dimensions of 6.00 by 2.85 by 6.00 were found with FLUENT CFD and graphics of change were drawn. As result, difference between 2-D and 3-D solutions was found approximately 10%. This was attributed as the effect of air flow pattern effects over other surfaces in the enclosure that can not be counted at 2-D solutions. The change of CHTC at different characteristic lengths was illustrated as well.


2011 ◽  
Vol 396-398 ◽  
pp. 2234-2239
Author(s):  
Zu Ling Liu ◽  
Cheng Bo Wu ◽  
Xian Jun Wang ◽  
Zheng Rong Zhang

A comprehensive experiment was conducted for heat transfer characteristics for an array of impinging gaseous slot jets to a flat plate with strong turbulence (nozzle exit Reynolds number Re=22500~64700).Find that turbulence intensity of flow has an important influence on local forced convective heat transfer coefficient. Meanwhile, the nozzle-to-plate spacing and nozzle exit Reynolds number Re would affect the mean forced convective heat transfer coefficient of the slot jets. And heat transfer efficiency of slot jets has been set to show the relation between ability of the jets and energy consumption of gas supply.


Sign in / Sign up

Export Citation Format

Share Document