Influence of Geometric Design Parameters Onto Vibratory Response and High-Cycle Fatigue Safety for Turbine Blades With Friction Damper

Author(s):  
Matthias Hüls ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

Among the major concerns for high aspect-ratio, turbine blades are forced and self-excited (flutter) vibrations, which can cause failure by high-cycle fatigue (HCF). The introduction of friction damping in turbine blades, such as by coupling of adjacent blades via under platform dampers, can lead to a significant reduction of resonance amplitudes at critical operational conditions. In this paper, the influence of basic geometric blade design parameters onto the damped system response will be investigated to link design parameters with functional parameters like damper normal load, frequently used in nonlinear dynamic analysis. The shape of a simplified turbine blade is parameterized along with the under platform damper configuration. The airfoil is explicitly included into the parameterization in order to account for changes in blade mode shapes. For evaluation of the damped system response, a reduced-order model for nonlinear friction damping is included into an automated three-dimensional (3D) finite element analysis (FEA) tool-chain. Based on a design of experiments approach, the design space will be sampled and surrogate models will be trained on the received dataset. Subsequently, the mean and interaction effects of the geometric design parameters onto the resonance amplitude and safety against HCF will be outlined. The HCF safety is found to be affected by strong secondary effects onto static and resonant vibratory stress levels. Applying an evolutionary optimization algorithm, it is shown that the optimum blade design with respect to minimum vibratory response can differ significantly from a blade designed toward maximum HCF safety.

Author(s):  
Matthias Hüls ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

Among the major concerns for high aspect-ratio turbine blades are forced and self-excited (flutter) vibrations which can cause failure by high-cycle fatigue. The introduction of friction damping in turbine blades, such as by coupling of adjacent blades via under platform dampers, can lead to a significant reduction of resonance amplitudes at critical operational conditions. In this paper, the influence of basic geometric blade design parameters onto the damped system response will be investigated to link design parameters with functional parameters like damper normal load, frequently used in nonlinear dynamic analysis. The shape of a simplified large aspect-ratio turbine blade is parameterized along with the under platform damper configuration. The airfoil is explicitly included into the parameterization in order to account for changes in blade mode shapes. For evaluation of the damped system response under a typical excitation, a reduced order model for non-linear friction damping is included into an automated 3D FEA tool-chain. Based on a design of experiments approach, the design space will be sampled and a surrogate model is trained on the received dataset. Subsequently, the mean and interaction effects of the true geometric blade design parameters onto the resonance amplitude and safety against high-cycle fatigue will be outlined for a critical first bending type vibrational motion. Design parameters were mainly found to influence the resonance amplitude by their effect onto the tip-to-platform deflection ratio. The HCF safety was affected by those design parameters with large sensitivity onto static and resonant vibratory stress levels. Applying an evolutionary optimization algorithm, it is shown that the optimum blade design with respect to minimum vibratory response at a particular node can differ significantly from a blade designed toward maximum HCF safety.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Matthias Hüls ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A major concern for new generations of large turbine blades is forced and self-excited (flutter) vibrations, which can cause high-cycle fatigue (HCF). The design of friction joints is a commonly applied strategy for systematic reduction of resonance amplitudes at critical operational conditions. In this paper, the influence of geometric blade design parameters onto the damped system response is investigated for direct snubber coupling. A simplified turbine blade geometry is parametrized and a well-proven reduced-order model for turbine blade dynamics under friction damping is integrated into a 3D finite element tool-chain. The developed process is then used in combination with surrogate modeling to predict the effect of geometric design parameters onto the vibrational characteristics. As such, main and interaction effects of design variables onto static normal contact force and resonance amplitudes are determined for a critical first bending mode. Parameters were found to influence the static normal contact force based on their effect on elasticity of the snubber, torsional stiffness of the airfoil and free blade untwist. The results lead to the conclusion that geometric design parameters mainly affect the resonance amplitude equivalent to their influence on static normal contact force in the friction joint. However, it is demonstrated that geometric airfoil parameters influence blade stiffness and are significantly changing the respective mode shapes, which can lead to lower resonance amplitudes despite an increase in static contact loads. Finally, an evolutionary optimization is carried out and novel design guidelines for snubbered blades with friction damping are formulated.


Author(s):  
Markus Waesker ◽  
Bjoern Buelten ◽  
Norman Kienzle ◽  
Christian Doetsch

Abstract Due to the transition of the energy system to more decentralized sector-coupled technologies, the demand on small, highly efficient and compact turbines is steadily growing. Therefore, supersonic impulse turbines have been subject of academic research for many years because of their compact and low-cost conditions. However, specific loss models for this type of turbine are still missing. In this paper, a CFD-simulation-based surrogate model for the velocity coefficient, unique incidence as well as outflow deviation of the blade, is introduced. This surrogate model forms the basis for an exemplary efficiency optimization of the “Colclough cascade”. In a first step, an automatic and robust blade design methodology for constant-channel blades based on the supersonic turbine blade design of Stratford and Sansome is shown. The blade flow is fully described by seven geometrical and three aerodynamic design parameters. After that, an automated numerical flow simulation (CFD) workflow for supersonic turbine blades is developed. The validation of the CFD setup with a published supersonic axial turbine blade (Colclough design) shows a high consistency in the shock waves, separation zones and boundary layers as well as velocity coefficients. A design of experiments (DOE) with latin hypercube sampling and 1300 sample points is calculated. This CFD data forms the basis for a highly accurate surrogate model of supersonic turbine blade flow suitable for Mach numbers between 1.1 and 1.6. The throat-based Reynolds number is varied between 1*104 and 4*105. Additionally, an optimization is introduced, based on the surrogate model for the Reynolds number and Mach number of Colclough and no degree of reaction (equal inlet and outlet static pressure). The velocity coefficient is improved by up to 3 %.


Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


Author(s):  
Calogero Avola ◽  
Alberto Racca ◽  
Angelo Montanino ◽  
Carnell E. Williams ◽  
Alfonso Renella ◽  
...  

Abstract Maximization of the turbocharger efficiency is fundamental to the reduction of the internal combustion engine back-pressure. Specifically, in turbochargers with a variable geometry turbine (VGT), energy losses can be induced by the aerodynamic profile of both the nozzle vanes and the turbine blades. Although appropriate considerations on material limits and structural performance of the turbine wheel are monitored in the design and aero-mechanical optimization phases, in these stages, fatigue phenomena might be ignored. Fatigue occurrence in VGT wheels can be categorized into low and high cycle behaviors. The former would be induced by the change in turbine rotational speed in time, while the latter would be caused by the interaction between the aerodynamic excitation and blades resonating modes. In this paper, an optimized turbine stage, including unique nozzle vanes design and turbine blades profile, has been assessed for high cycle fatigue (HCF) behavior. To estimate the robustness of the turbine wheel under several powertrain operations, a procedure to evaluate HCF behavior has been developed. Specifically, the HCF procedure tries to identify the possible resonances between the turbine blades frequency of vibrations and the excitation order induced by the number of variable vanes. Moreover, the method evaluates the turbine design robustness by checking the stress levels in the component against the limits imposed by the Goodman law of the material selected for the turbine wheel. In conclusion, both the VGT design and the HCF approach are experimentally assessed.


Author(s):  
C. H. Richter ◽  
U. Krupp ◽  
M. Zeißig ◽  
G. Telljohann

Slender turbine blades are susceptible to excitation. Resulting vibrations stress the blade's fixture to the rotor or stator. In this paper, high cycle fatigue at the edge of contact (EOC) between blade and rotor/stator of such fixtures is investigated both experimentally and numerically. Plasticity in the contact zone and its effects on, e.g., contact tractions, fatigue determinative quantities, and fatigue itself are shown to be of considerable relevance. The accuracy of the finite element analysis (FEA) is demonstrated by comparing the predicted utilizations and slip region widths with data gained from tests. For the evaluation of EOC fatigue, tests on simple notched specimens provide the limit data. Predictions on the utilization are made for the EOC of a dovetail setup. Tests with this setup provide the experimental fatigue limit to be compared to. The comparisons carried out show a good agreement between the experimental results and the plasticity-based calculations of the demonstrated approach.


Author(s):  
Philipp Amtsfeld ◽  
Michael Lockan ◽  
Dieter Bestle ◽  
Marcus Meyer

State-of-the-art aerodynamic blade design processes mainly consist of two phases: optimal design of 2D blade sections and then stacking them optimally along a three-dimensional stacking line. Such a quasi-3D approach, however, misses the potential of finding optimal blade designs especially in the presence of strong 3D flow effects. Therefore, in this paper a blade optimization process is demonstrated which uses an integral 3D blade model and 3D CFD analysis to account for three-dimensional flow features. Special emphasis is put on shortening design iterations and reducing design costs in order to obtain a rapid automatic optimization process for fully 3D aerodynamic turbine blade design which can be applied in an early design phase already. The three-dimensional parametric blade model is determined by up to 80 design variables. At first, the most important design parameters are chosen based on a non-linear sensitivity analysis. The objective of the subsequent optimization process is to maximize isentropic efficiency while fulfilling a minimal set of constraints. The CFD model contains both important geometric features like tip gaps and fillets, and cooling and leakage flows to sufficiently represent real flow conditions. Two acceleration strategies are used to cut down the turn-around time from weeks to days. Firstly, the aerodynamic multi-stage design evaluation is significantly accelerated with a GPU-based RANS solver running on a multi-GPU workstation. Secondly, a response surface method is used to reduce the number of expensive function evaluations during the optimization process. The feasibility is demonstrated by an application to a blade which is a part of a research rig similar to the high pressure turbine of a small civil jet engine. The proposed approach enables an automatic aerodynamic design of this 3D blade on a single workstation within few days.


Author(s):  
V. P.“Swami” Swaminathan ◽  
Ronghua Wei ◽  
David W. Gandy

Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components and lead to premature failures, business loss, and repair costs to power plant owners and operators. Under a program funded by the Electric Power Research Institute, TurboMet International and Southwest Research Institute (SRI) have developed hard erosion resistant nanocoatings and have conducted evaluation tests. These coatings are targeted for application in steam and gas turbines to mitigate the adverse effects of SPE and LDE on rotating blades and stationary vanes. Based on a thorough study of the available information, the most promising coatings, such as nanostructured titanium silicon carbonitride (TiSiCN), titanium nitride (TiN), and multilayered nanocoatings, were selected. State-of-the-art nanotechnology coating facilities at SwRI were used to develop the coatings. The plasma enhanced magnetron sputtering method was used to apply these coatings on various substrates. Ti–6Al–4V, 12Cr, 17-4PH, and custom 450 stainless steel substrates were selected based on the current alloys used in gas turbine compressors and steam turbine blades and vanes. Coatings with up to 30μm thickness have been deposited on small test coupons. Initial screening tests on coated coupons by solid particle erosion testing indicate that these coatings have excellent erosion resistance by a factor of 20 over the bare substrate. Properties of the coating, such as modulus, hardness, microstructural conditions including the interface, and bond strength, were determined. Tensile and high-cycle fatigue tests on coated and uncoated specimens indicate that the presence of the coatings has no negative effects but has a positive influence on the high-cycle fatigue strength at zero and high mean stresses.


Author(s):  
Swen Weser ◽  
Uwe Gampe ◽  
Mario Raddatz ◽  
Roland Parchem ◽  
Petr Lukas

Rotor blades are the highest thermal-mechanical loaded components of gas turbines. Their service life is limited by interaction of creep, low cycle fatigue (LCF), high cycle fatigue (HCF) and surface attack. Because assurance of adequate HCF strength of the rotor blade is an important issue of the blade design the European project PREMECCY has been started by the European aircraft engine manufacturers and research institutes to enhance the predictive methods for combined cycle fatigue (CCF), as a superposition of HCF and LCF. Although today’s predictive methods ensure safe blade design, there are certain shortcomings of assessing fatigue life with Haigh or “modified Goodman diagrams”, such as isolated HCF assessment as well as uni-axial and off-resonant testing. HCF and LCF are considered without taking into account their interaction. PREMECCY is aimed to deliver new and improved CCF prediction methods for exploitation in the industrial design process. Beside development of predictive methods the authors are involved in the design and testing of advanced specimens representing rotor blade features. In this connection the paper presents a novel test specimen type and a unique hot gas rig for CCF feature test at mechanical and ambient representative conditions.


1992 ◽  
Vol 114 (2) ◽  
pp. 284-292 ◽  
Author(s):  
A. J. Scalzo

Combustion turbine blade design criteria can generally be classified as either temperature or fatigue related. Since less is usually known about the factors influencing the fatigue phenomenon, it is considered the more challenging. In addition, as analytical and experimental techniques became more sophisticated and more accurate, the natural tendency was to replace archaic “guidelines” or “rules” with less conservative approaches that at times led to the discovery of new high-cycle fatigue “thresholds.” This paper presents the evolution of the combustion turbine blade high cycle fatigue design criteria for free-standing blades. It also presents the analysis and corrective actions taken to resolve several unique combustion turbine blade fatigue problems, all encountered over a 35-year period while the author has been employed at Westinghouse Electric Corporation. Included are high-cycle fatigue problems due to cooling air leakage, seal pin friction, and combustion temperature maldistribution, as well as flow-induced nonsynchronous vibration.


Sign in / Sign up

Export Citation Format

Share Document