Initiation Pressure and Corresponding Initiation Mode of Drilling Induced Fracture in Pressure Depleted Reservoir

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Qi Gao ◽  
Yuanfang Cheng ◽  
Chuanliang Yan ◽  
Long Jiang ◽  
Songcai Han

With the production of oil and gas from the reservoir for a long period of time, pore pressure will decline from the initial value to a lower level, which narrows the safety mud weight window, and consequently, makes it easier to generate the drilling induced fracture (DIF). In this paper, a new analytical model is proposed for predicting initiation pressure and corresponding initiation mode of DIF in the pressure depleted reservoir. The effect of pore pressure decline on stress field is considered. Formation around the borehole is divided into plastic zone and elastic zone according to the geomechanical parameters, and small deformation theory is adopted in both of the plastic zone and the elastic zone. For the plastic zone, the nonlinear constitutive relationship is captured using equivalent stress and equivalent strain. In addition, excess pore pressure theory is introduced to describe the pore pressure change during the drilling process owing to the formation of mudcake on the borehole wall. Then, the stress and pore pressure distribution in these two zones and the radius of the plastic zone are obtained. Meanwhile, the theoretical formula of initiation pressure and the corresponding initiation mode of DIF are derived. The reliability of the new model is validated by comparing the obtained results with other published models and the field measured data.

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Yan Chuanliang ◽  
Deng Jingen ◽  
Lai Xiangdong ◽  
Li Xiaorong ◽  
Feng Yongcun

Deepwater shallow sediment is less-consolidated, with a rock mechanical behavior similar to saturated soil. It is prone to borehole shrinkage and downhole leakage. Assume the deepwater shallow sediments are homogeneous, isotropic, and ideally elastoplastic materials, and formation around the borehole is divided into elastic and plastic zone. The theories of small deformation and large deformation are, respectively, adopted in the elastic and plastic zone. In the plastic zone, Mohr–Coulomb strength criterion is selected. The stress and deformation distributions in these two zones, and the radius of plastic zone are derived. The collapse pressure calculation formula of deepwater shallow sediments under the control of different shrinkage rates is obtained. With the introduction of excess pore pressure theory in soil mechanics, the distribution rule of excess pore pressure in these two zones is obtained. Combined with hydraulic fracturing theory, the fracture mechanism of shallow sediments is analyzed and the theoretical formula of fracture pressure is given. The calculation results are quite close to the practically measured results. So the reliability of the theory is confirmed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chuanliang Yan ◽  
Jingen Deng ◽  
Lianbo Hu ◽  
Baohua Yu

The shallow sediment in deep water has weak strength and easily gets into plastic state under stress concentration induced by oil and gas drilling. During drilling, the formation around a wellbore can be divided into elastic zone and plastic zone. The unified strength theory was used after yielding. The radius of the plastic zone and the theoretical solution of the stress distribution in these two zones were derived in undrained condition. The calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel’s excess pore pressure theory. Combined with hydraulic fracturing theory, the fracturing mechanism of shallow sediment was analyzed and the theoretical formula of fracturing pressure was given. Furthermore, the influence of the parameters of unified strength theory on fracturing pressure was analyzed. The theoretical calculation results agreed with measured results approximately, which preliminary verifies the reliability of this theory.


2012 ◽  
Vol 446-449 ◽  
pp. 1940-1943
Author(s):  
Yang Liu ◽  
Hong Xiang Yan

Numerical simulation of vibro-stone column is taken to simulate the installation of vibro-stone column. A relationship based on test is adopted to calculate the excess pore pressure induced by vibratory energy during the installation of vibro-stone column. A numerical procedure is developed based on the formula and Terzaghi-Renduric consolidation theory. Finally numerical results of composite stone column are compared single stone column.


2020 ◽  
Author(s):  
Davide Mencaroni ◽  
Roger Urgeles ◽  
Jonathan Ford ◽  
Jaume Llopart ◽  
Cristina Sànchez Serra ◽  
...  

<p>Contourite deposits are generated by the interplay between deepwater bottom-currents, sediment supply and seafloor topography. The Gulf of Cadiz, in the Southwest Iberian margin, is a famous example of extensive contourite deposition driven by the Mediterranean Outflow Water (MOW), which exits the Strait of Gibraltar, flows northward following the coastline and distributes the sediments coming from the Guadalquivir and Guadiana rivers. The MOW and related contourite deposits affect the stability of the SW Iberian margin in several ways: on one hand it increases the sedimentation rate, favoring the development of excess pore pressure, while on the other hand, by depositing sand it allows pore water pressure to dissipate, potentially increasing the stability of the slope.</p><p>In the Gulf of Cadiz, grain size distribution of contourite deposits is influenced by the seafloor morphology, which splits the MOW in different branches, and by the alternation of glacial and interglacial periods that affected the MOW hydrodynamic regimes. Fine clay packages alternates with clean sand formations according to the capacity of transport of the bottom-current in a specific area. Generally speaking, coarser deposits are found in the areas of higher MOW flow energy, such as in the shallower part of the slope or in the area closer to the Strait of Gibraltar, while at higher water depths the sedimentation shifts to progressively finer grain sizes as the MOW gets weaker. Previous works show that at present-day the MOW flows at a maximum depth of 1400 m, while during glacial periods the bottom-current could have reached higher depths.</p><p>In this study we derived the different maximum depths at which the MOW flowed by analyzing the distribution of sands at different depths along the Alentejo basin slope, in the Northern sector of the Gulf of Cadiz.</p><p>Here we show how changes in sand distribution along slope, within the stratigraphic units deposited between the Neogene and the present day, are driven by glacial – interglacial period alternation that influenced the hydrodynamic regime of the MOW.</p><p>By deriving the depositional history of sand in the Alentejo basin, we are able to correlate directly the influence that climatic cycles had on the MOW activity. Furthermore, by interpreting new multi-channel seismic profiles we have been able to derive a detailed facies characterization of the uppermost part of the Gulf of Cadiz.</p><p>An accurate definition of sand distribution along slope plays an important role in evaluating the stability of the slope itself, e.g. to understand if the sediments may be subjected to excess pore pressure generation. As sand distribution is a direct function of the bottom-current transport capacity, the ultimate goal of this study is to understand how climate variations can affect the stability of submarine slope by depositing contourite-related sand.</p>


2019 ◽  
Vol 92 ◽  
pp. 16005
Author(s):  
Hansini Mallikarachchi ◽  
Kenichi Soga

When saturated granular materials which are dilative in nature are subjected to the undrained deformation, their strength increases due to the generation of negative excess pore pressure. This phenomenon is known as dilative hardening and can be witnessed in saturated dense sand or rocks during very fast loading. However, experimental evidence of undrained biaxial compression tests of dense sand shows a limit to this dilative hardening due to the formation of shear bands. There is no consensus in the literature about the mechanism which triggers these shear bands in the dense dilative sand under isochoric constraint. The possible theoretical reasoning is the local drainage inside the specimen under the globally undrained condition, which is challenging to be monitored experimentally. Hence, both incept of localisation and post-bifurcation of the saturated undrained dense sand demand further numerical investigation. Pathological mesh dependency hinders the ability of the finite element method to represent the localisation without advanced regularisation methods. This paper attempt to provide a macroscopic constitutive behaviour of the undrained deformation of the saturated dense sand in the presence of a locally drained shear band. Discontinuation of dilatant hardening due to partial drainage between the shear band and the adjacent material is integrated into the constitutive model without changing governing equilibrium equations. Initially, a classical bifurcation analysis is conducted to detect the inception and inclination of the shear band based on the underlying drained deformation. Then a post-bifurcation analysis is carried out assuming an embedded drained or partially drained shear band at gauss points which satisfy bifurcation criterion. The smeared shear band approach is utilised to homogenise the constitutive relationship. It is observed that the dilatant hardening in the saturated undrained dense sand is reduced considerably due to the formation of shear bands.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hung-Ming Lin ◽  
Jian-Hong Wu ◽  
Erik Sunarya

A new consolidated undrained ring shear test capable of measuring the pore pressures is presented to investigate the initiation mechanism of the Hsien-du-shan rock avalanche, triggered by Typhoon Morakot, in southern Taiwan. The postpeak state of the landslide surface between the Tangenshan sandstone and the remolded landslide gouge is discussed to address the unstable geomorphological precursors observed before the landslide occurred. Experimental results show that the internal friction angle of the high water content sliding surface in the total stress state, between 25.3 and 26.1°, clarifies the reason of the stable slope prior to Typhoon Morakot. In addition, during the ring shear tests, it is observed that the excess pore pressure is generated by the shear contractions of the sliding surface. The remolded landslide gouge, sheared under the high normal stress, rendered results associated with high shear strength, small shear contraction, low hydraulic conductivity, and continuous excess pore pressure. The excess pore pressure feedback at the sliding surface may have accelerated the landslide.


Sign in / Sign up

Export Citation Format

Share Document