scholarly journals A Constitutive Model for Locally Drained Shear Bands in Globally Undrained Dense Sand

2019 ◽  
Vol 92 ◽  
pp. 16005
Author(s):  
Hansini Mallikarachchi ◽  
Kenichi Soga

When saturated granular materials which are dilative in nature are subjected to the undrained deformation, their strength increases due to the generation of negative excess pore pressure. This phenomenon is known as dilative hardening and can be witnessed in saturated dense sand or rocks during very fast loading. However, experimental evidence of undrained biaxial compression tests of dense sand shows a limit to this dilative hardening due to the formation of shear bands. There is no consensus in the literature about the mechanism which triggers these shear bands in the dense dilative sand under isochoric constraint. The possible theoretical reasoning is the local drainage inside the specimen under the globally undrained condition, which is challenging to be monitored experimentally. Hence, both incept of localisation and post-bifurcation of the saturated undrained dense sand demand further numerical investigation. Pathological mesh dependency hinders the ability of the finite element method to represent the localisation without advanced regularisation methods. This paper attempt to provide a macroscopic constitutive behaviour of the undrained deformation of the saturated dense sand in the presence of a locally drained shear band. Discontinuation of dilatant hardening due to partial drainage between the shear band and the adjacent material is integrated into the constitutive model without changing governing equilibrium equations. Initially, a classical bifurcation analysis is conducted to detect the inception and inclination of the shear band based on the underlying drained deformation. Then a post-bifurcation analysis is carried out assuming an embedded drained or partially drained shear band at gauss points which satisfy bifurcation criterion. The smeared shear band approach is utilised to homogenise the constitutive relationship. It is observed that the dilatant hardening in the saturated undrained dense sand is reduced considerably due to the formation of shear bands.

2018 ◽  
Vol 941 ◽  
pp. 1391-1396 ◽  
Author(s):  
Nitish Bibhanshu ◽  
Satyam Suwas

The hot workability of gamma titanium aluminide alloy, Ti-48Al-2V-2Nb, was assessed in the cast condition through a series of compression tests conducted over a range of temperatures (1000 to 1175 °C) and at the strain rate of 10 S-1. The mechanism of dynamics recrystallization has been investigated from SEM Z-contrast images and from the Electron backscattered diffraction EBSD as well. It has been observed that volume fraction of the recrystallized grains increases with increasing the deformation temperature. The major volume fraction of the recrystallized grains was observed in the shear band which was forming at an angle 45 ̊ with respect to the compression direction. The mechanism of breaking of the laths and the region of the dynamic recrystallization were also investigated from the SEM Z-contrast image and EBSD. The dynamic recrystallization occurred in the region of the broken laths and shear bands. The breaking of the laths was because of the kinking of the lamellae. The shear band, kinked lamellae and dynamic recrystallized region where all investigated simultaneously.


2021 ◽  
Vol 9 (11) ◽  
pp. 1158
Author(s):  
Xiaobing Lu ◽  
Xuhui Zhang ◽  
Fangfang Sun ◽  
Shuyun Wang ◽  
Lele Liu ◽  
...  

The occurrence of a shear band is often thought as the precursor of failure. To study the initiation of shear banding in gas hydrate-bearing sediments, two groups of triaxial compression tests combined with a CT (computer tomography) scan were conducted by triaxial CT-integrated equipment under two confining pressures and seven hydrate saturations. The macro stress–strain curves and the corresponding CT scanning images of the micro-structure and the distribution of the components were obtained. The geometric parameters of the shear bands were measured based on the CT images at four typical axial strains, respectively. The distribution characteristics of soil particles, water, hydrate and gas were also analyzed. It is shown that the existence of methane hydrate changes the mechanical property of hydrate-bearing sediment from plastic failure to brittle failure when the hydrate saturation is over 13%, which occurs in the range of the tests in this paper. The peak of the deviatoric stress increases with the hydrate saturation. The shear band is in either a single oblique line or inter-cross lines depending on the hydrate saturation, the effective confining pressure and the initial distribution of the gas hydrate. Most of the shear band surfaces are not straight, and the widths of the shear bands are almost non-uniformly distributed.


2019 ◽  
Vol 92 ◽  
pp. 16006 ◽  
Author(s):  
Hansini Mallikarachchi ◽  
Kenichi Soga

Experimental evidence indicates that the shear localisation acts as a precursor to the failure in biaxial compression tests of granular materials. Once formed they are persistent and lead to progressive failure of most geotechnical structures. It is generally accepted that the primary mode of deformation within these shear bands is simple shear which is accompanied by rotation of principal axes. Hence, the conventional plasticity theories based on the assumption of coaxility is not sufficient to describe the behaviour within those shear bands. This paper highlights the influence of the non-coaxility on the initiation and orientation of shear bands in both drained and undrained sand. The con-coaxial plasticity theory is integrated into a critical state constitutive model enriched with the state parameter concept. The model is capable of taking account of the variation of lode angle under plane strain condition. Numerical plane strain biaxial compression tests are conducted to observe the effect of non-coaxility on shear localisation. Bifurcation criteria based on the acoustic tensor are checked to predict the onset and inclination of the shear band. Predictions from the non-coaxial model are compared with those of coaxial model. The influence of the initial void ratio for the formation of shear bands is explored. Results are compared qualitatively with experimental observations.


2019 ◽  
Vol 92 ◽  
pp. 06006
Author(s):  
Junggeun Hwang ◽  
Hoe I. Ling

Most geotechnical structures failed by formation and development of shear bands in soils. Thus, shear deformation and shear bands development evaluation are necessary to understand shear failure mechanism. During shearing, deformation behaviour analysis for soil particles within entire soil specimen are evaluated to understand the soil behaviour and shear strength characteristics. In this paper, a series of plane strain compression tests using Nevada sand and Ottawa sand were conducted to identify the shear strain and shear failure mechanism. With the results of plane strain compression tests, image analyses using Particle Image Velocimetry (PIV) were carried out in order to measure the change in position of soil particles and shear bands development. Deformation vectors and contours were constructed to see the entire deformation mechanism in the soil specimen. During shearing, shear band was identified after peak stress and most visually distinctive at residual state. However, shear band started to develop invisibly immediately after starting loading and this invisible development was able to be observed by horizontal and vertical movement analyses of PIV. Soil particles moved actively in horizontal and vertical direction to generate shear band in the beginning of shearing. After development of shear band, soil particles moved along the shear band.


2000 ◽  
Vol 644 ◽  
Author(s):  
Paul A. El-Deiry ◽  
Richard P. Vinci ◽  
Nicholas Barbosa ◽  
T. C. Hufnagel

AbstractWe have studied the development of shear band structure in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during deformation. In order to investigate the relationship between shear band development and serrated flow, we performed uniaxial compression tests in an environmental scanning electron microscope (ESEM). During the deformation, load-time data and surface images were simultaneously recorded. In the stress-time data, stress drops or “serrated flow” appear to correlate to new shear band formation. The majority of the shear bands we observed were at an angle of 45° with respect to the compression axis. In addition, we measured shear offset as a function of position along the shear band. We observed two different offset behaviors: Consistent offset along the length of a shear band, and offset that is localized into part of the band. The localized offset behavior could be evidence for dislocation-like displacement increments, or could be the result of a transition in the failure mode.


2010 ◽  
Vol 452-453 ◽  
pp. 861-864 ◽  
Author(s):  
Haitham Alassi ◽  
Rune Holt

In this contribution we present more developments in the modified discrete element approach (MDEM) which was proposed to model fractures propagation in reservoir rock during production and fluid injection. The new development in this paper includes adding plasticity which allows the material to go into plastic deformation before initiating fractures. Several numerical tests are performed which mimic the real lab tests usually perform on rock samples, this includes direct tension test with initial crack to model crack propagation, and several biaxial compression tests to model the development of shear bands.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4384
Author(s):  
Mohd Aidy Faizal Johari ◽  
Asmawan Mohd Sarman ◽  
Saiful Amri Mazlan ◽  
Ubaidillah U ◽  
Nur Azmah Nordin ◽  
...  

Micro mechanism consideration is critical for gaining a thorough understanding of amorphous shear band behavior in magnetorheological (MR) solids, particularly those with viscoelastic matrices. Heretofore, the characteristics of shear bands in terms of formation, physical evolution, and response to stress distribution at the localized region have gone largely unnoticed and unexplored. Notwithstanding these limitations, atomic force microscopy (AFM) has been used to explore the nature of shear band deformation in MR materials during stress relaxation. Stress relaxation at a constant low strain of 0.01% and an oscillatory shear of defined test duration played a major role in the creation of the shear band. In this analysis, the localized area of the study defined shear bands as varying in size and dominantly deformed in the matrix with no evidence of inhibition by embedded carbonyl iron particles (CIPs). The association between the shear band and the adjacent zone was further studied using in-phase imaging of AFM tapping mode and demonstrated the presence of localized affected zone around the shear band. Taken together, the results provide important insights into the proposed shear band deformation zone (SBDZ). This study sheds a contemporary light on the contentious issue of amorphous shear band deformation behavior and makes several contributions to the current literature.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2016 ◽  
Vol 35 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Sendong Gu ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Wenfei Shen

AbstractThe hot deformation characteristics of nickel-based alloy Nimonic 80A were investigated by isothermal compression tests conducted in the temperature range of 1,000–1,200°C and the strain rate range of 0.01—5 s–1on a Gleeble-1500 thermomechanical simulator. In order to establish the constitutive models for dynamic recrystallization (DRX) behavior and flow stress of Nimonic 80A, the material constantsα,nand DRX activation energyQin the constitutive models were calculated by the regression analysis of the experimental data. The dependences of initial stress, saturation stress, steady-state stress, dynamic recovery (DRV) parameter, peak strain, critical strain and DRX grain size on deformation parameters were obtained. Then, the Avrami equation including the critical strain for DRX and the peak strain as a function of strain was established to describe the DRX volume fraction. Finally, the constitutive model for flow stress of Nimonic 80A was developed in DRV region and DRX region, respectively. The flow stress values predicted by the constitutive model are in good agreement with the experimental ones, which indicates that the constitutive model can give an accurate estimate for the flow stress of Nimonic 80A under the deformation conditions.


Sign in / Sign up

Export Citation Format

Share Document