Doping Solar Field Heat Transfer Fluid With Nanoparticles

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Mohammad Abutayeh ◽  
Yacine Addad ◽  
Eiyad Abu-Nada ◽  
Anas Alazzam

A previously developed model of a concentrating solar power plant has been modified to accommodate doping the heat transfer fluid (HTF) with nanoparticles. The model with its unalloyed HTF has been validated with actual operating data beforehand. The thermo-physical properties of the HTF were modified to account for the nanoparticle doping. The nanoparticle content in the HTF was then varied to evaluate its influence on solar power generation. The model was run to simulate plant operation on four different days representing the four different seasons. As the nanoparticle concentration was increased, heat losses were slightly reduced, transient warm up heat was increased, transient cool down heat was reduced, and the overall impact on power generation was trivial. Doping HTFs with nanoparticles does not seem promising for solar thermal power generation from a performance perspective. Moreover, doping HTFs with nanoparticles involves many other operational challenges such as sedimentation and abrasion.

2017 ◽  
Author(s):  
Mohammad Abutayeh ◽  
Yacine Addad ◽  
Anas Alazzam

A previously–developed model of a concentrating solar power plant has been modified to accommodate doping the heat transfer fluid with nano–particles. The model with its unalloyed heat transfer fluid has been validated with actual operating data beforehand. The thermo–physical properties of the heat transfer fluid were modified to account for the nano–particle doping. The nano–particle content in the heat transfer fluid was then varied to evaluate its influence on solar power generation. The model was run to simulate plant operation on four different days representing the four different seasons. As the nano–particle concentration was increased, heat losses were slightly reduced, transient warm up heat was increased, transient cool down heat was reduced, and the overall impact on power generation was trivial. Doping heat transfer fluids with nano–particles does not seem promising for solar thermal power generation from a performance perspective. Moreover, doping heat transfer fluids with nano–particles involves many other operational challenges such as sedimentation and abrasion.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


Author(s):  
Mohammad Abutayeh ◽  
Anas Alazzam ◽  
Bashar El-Khasawneh

A scheme to streamline the electric power generation profile of concentrating solar power plants of the parabolic trough collector type is suggested. The scheme seeks to even out heat transfer rates from the solar field to the power block by splitting the typical heat transfer fluid loop into two loops using an extra vessel and an extra pump. In the first loop, cold heat transfer fluid is pumped by the cold pump from the cold vessel to the solar field to collect heat before accumulating in the newly introduced hot vessel. In the second loop, hot heat transfer fluid is pumped by the hot pump from the hot vessel to a heat exchanger train to supply the power block with its heat load before accumulating in the cold vessel. The new scheme moderately decouples heat supply from heat sink allowing for more control of heat delivery rates thereby evening out power generation.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Mohammad Abutayeh ◽  
Kwangkook Jeong ◽  
Anas Alazzam ◽  
Bashar El-Khasawneh

A scheme to streamline the electric power generation profile of concentrating solar power (CSP) plants of the parabolic trough collector (PTC) type is suggested. The scheme seeks to even out heat transfer rates from the solar field (SF) to the power block (PB) by splitting the typical heat transfer fluid (HTF) loop into two loops using an extra vessel and an extra pump. In the first loop, cold HTF is pumped by the cold pump from the cold vessel to the SF to collect heat before accumulating in the newly introduced hot vessel. In the second loop, hot HTF is pumped by the hot pump from the hot vessel to a heat exchanger train (HXT) to supply the PB with its heat load before accumulating in the cold vessel. The new scheme moderately decouples heat supply from heat sink allowing for more control of heat delivery rates thereby evening out power generation.


Energies ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Jose Rogada ◽  
Lourdes Barcia ◽  
Juan Martinez ◽  
Mario Menendez ◽  
Francisco de Cos Juez

Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF) is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF). In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative) models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive regression splines (MARS) model.


2019 ◽  
Vol 136 ◽  
pp. 02016
Author(s):  
Yudong Liu ◽  
Fangqin Li ◽  
Jianxing Ren ◽  
Guizhou Ren ◽  
Honghong Shen ◽  
...  

China is a big consumer of energy resources. With the gradual decrease of non-renewable resources such as oil and coal, it is very important to adopt renewable energy for economic development. As a kind of abundant renewable energy, solar power has been widely used. This paper introduces the development status of solar power generation technology, mainly introduces solar photovoltaic power generation technology, briefly describes the principle of solar photovoltaic power generation, and compares and analyzes four kinds of solar photovoltaic power generation technology, among which photovoltaic power generation technology is the most mature solar photovoltaic power utilization technology at present.


2013 ◽  
Vol 815 ◽  
pp. 31-36
Author(s):  
Xiao Min Cheng ◽  
Jun MA ◽  
Jian Yuan Ye ◽  
Xian Jie Yang

The charge and discharge process of heat transfer fluid in the solar thermal power generation system was simulated. A thermal cycle test repeated between high temperature and low temperature was put on prepared Bi-Pb-Sn-Cd low-melting-point alloy. The thermal physical performance tests were put on the alloy samples which experimented with 200, 400 and 800 times thermal cycle test respectively. The test results show that the specific heat capacity of alloy sample declines slowly and the thermal conductivity increases slowly. The phase change temperature of alloy increases slightly and latent heat decreases slightly with the thermal cycle continuing.


Author(s):  
Marc Dunham ◽  
Wojciech Lipinski

This paper explores the theoretical efficiencies of single Brayton and combined Brayton-Rankine thermodynamic power cycles for distributed solar thermal power generation. Thermodynamic analyses are conducted for the nominal solar power input to the receiver of 75 kW, concentration ratio in the range 50–100 suns, and for selected heat transfer fluids including air, argon, carbon dioxide, helium, and hydrogen for the Brayton cycle and for the topping cycle of the combined system. C6-fluoroketone, cyclohexane, n-pentane, R-141b, R-245fa, HFE-7000, and steam are examined as working fluids in the bottoming segment of the combined cycle. A single Brayton cycle is found to reach a peak efficiency of 13.3% with carbon dioxide and 100 suns solar input. The four top-performing Brayton cycle fluids are examined as topping cycle fluids in the combined cycle. Each of the four fluids is paired with seven potential bottoming fluids, resulting in 28 heat transfer fluid configurations. The combination of the Brayton topping cycle using carbon dioxide and the Rankine bottoming cycle using R-141b gives the highest thermal efficiency of 22.3% for 100 suns.


2020 ◽  
pp. 0958305X2092159
Author(s):  
Umish Srivastva ◽  
K Ravi Kumar ◽  
RK Malhotra ◽  
SC Kaushik

The paper presents energy–exergy–economic–environment–ethics analysis of a concentrated solar thermal power plant. Design basis of a concentrated solar power for 24 h operation on parabolic trough collector technology in best suited direct normal irradiation location and least capital cost analysis has been presented. An unconventional approach of reducing the capital cost is analyzed by intentionally designing the power plant for sub-critical conditions using a low-cost mineral oil with permissible operating temperature of 320°C in place of the conventional synthetic solar grade oil of 400°C. Using low pressure and temperature steam in the plant, it has been shown that while there is a reduction of 0.1% in energetic efficiency, there is a gain of 0.28% in the exergetic efficiency of the solar power plant conditions, gross thermal efficiency decreases by 1.18% and the net thermal efficiency decreases by 2.91%. However, the energetic and exergetic utilization factor for heat transfer fluid is increased by 0.84 and 5.58%, respectively. By suitably adjusting the solar field configuration and inlet oil temperature, energy savings to the tune of 45% is possible apart from 2.5 times of cost saving. An attempt has been made to quantifiably assess the ethics of switching to renewable electricity through shared responsibility as a novelty in the study. The payback period for the investment has also been shown to reduce from 20 years to 5 years assuming that the carbon price increases, concentrated solar power cost comes down by 25%, and cost at which electricity can be sold increases to US $0.14 (Rs. 10) per unit.


Sign in / Sign up

Export Citation Format

Share Document