A Generalized Structure-Dependent Semi-Explicit Method for Structural Dynamics

Author(s):  
Jinze Li ◽  
Kaiping Yu ◽  
Xiangyang Li

In this paper, a novel generalized structure-dependent semi-explicit method is presented for solving dynamical problems. Some existing algorithms with the same displacement and velocity update formulas are included as the special cases, such as three Chang algorithms. In general, the proposed method is shown to be second-order accurate and unconditionally stable for linear elastic and stiffness softening systems. The comprehensive stability and accuracy analysis, including numerical dispersion, energy dissipation, and the overshoot behavior, are carried out in order to gain insight into the numerical characteristics of the proposed method. Some numerical examples are presented to show the suitable capability and efficiency of the proposed method by comparing with other existing algorithms, including three Chang algorithms and Newmark explicit method (NEM). The unconditional stability and second-order accuracy make the novel methods take a larger time-step, and the explicitness of displacement at each time-step succeeds in avoiding nonlinear iterations for solving nonlinear stiffness systems.

2006 ◽  
Vol 22 (4) ◽  
pp. 321-329 ◽  
Author(s):  
S.-Y. Chang ◽  
Y.-C. Huang ◽  
C.-H. Wang

AbstractNumerical properties of the Newmark explicit method in the solution of nonlinear systems are explored. It is found that the upper stability limit is no longer equal to 2 for the Newmark explicit method for nonlinear systems. In fact, it is enlarged for stiffness softening and is reduced for stiffness hardening. Furthermore, its relative period error increases with the increase of the step degree of nonlinearity for a given value of the product of the natural frequency and the time step. It is also verified that the viscous damping determined from an initial stiffness is effective to reduce displacement response in the solution of a nonlinear system as that for solving a linear elastic system. All the theoretical results are confirmed with numerical examples.


2009 ◽  
Vol 25 (3) ◽  
pp. 289-297 ◽  
Author(s):  
S.-Y. Chang

AbstractIn the step-by-step solution of a linear elastic system, an appropriate time step can be selected based on analytical evaluation resultsHowever, there is no way to select an appropriate time step for accurate integration of a nonlinear system. In this study, numerical properties of the Newmark explicit method are analytically evaluated after introducing the instantaneous degree of nonlinearity. It is found that the upper stability limit is equal to 2 only for a linear elastic system. In general, it reduces for instantaneous stiffness hardening and it is enlarged for instantaneous stiffness softening. Furthermore, the absolute relative period error increases with the increase of instantaneous degree of nonlinearity for a given product of the natural frequency and the time step. The rough guidelines for accurate integration of a nonlinear system are also proposed in this paper based on the analytical evaluation results. Analytical evaluation results and the feasibility of the rough guidelines proposed for accurate integration of a nonlinear system are confirmed with numerical examples.


2019 ◽  
Vol 16 (07) ◽  
pp. 1850111 ◽  
Author(s):  
Jinze Li ◽  
Kaiping Yu

A new family of noniterative algorithms with controllable numerical dissipations for structural dynamics is studied. Particularly, this paper provides nine members of the proposed algorithms and two existing methods are included as two special cases. The proposed algorithms achieve unconditional stability and are second-order accurate for linear elastic systems. The explicit expressions of stability conditions for nonlinear stiffness systems are completely presented, which shows that new algorithms possess unconditional and conditional stability for stiffness softening and hardening systems, respectively. A comprehensive stability and accuracy analysis, including numerical energy dissipations and dispersions, are studied in order to gain insight into spectral properties of new algorithms. Due to the existence of the nonzero spurious root, this paper also pays attention to the influence of the spurious root, which shows that the spurious root does not influence numerical accuracy at low-frequency domains. Although the proposed algorithms exhibit the unusual overshoot behaviors in either displacement or velocity, numerical damping ratios in new algorithms can significantly eliminate this overshoot at a few steps. The new dissipative algorithms are appropriate to solve numerical transient responses of the structure. Numerical examples are also presented to demonstrate the analytical results.


Author(s):  
Shuenn-Yih Chang ◽  
Chiu-Li Huang

An explicit method is presented herein whose coefficients are determined from the initial structural properties of the analyzed system. Thus, it is structure-dependent. This method has a great stability property when compared to the previously published method [6], which is unconditionally stable for linear elastic and any instantaneous stiffness softening systems while it only has conditional stability for an instantaneous stiffness hardening system. The most important improvement of this method is that it has unconditional stability for general instantaneous stiffness hardening systems in addition to linear elastic and instantaneous stiffness softening systems. This implies that a time step may be selected base on accuracy consideration only and the stability problem might be neglected. Hence, many computational efforts can be saved in the step-by-step solution of a general structural dynamic problem, where the response is dominated by the low frequency modes and the high frequency responses are of no great interest, when compared to an explicit method, such as the Newmark explicit method, and an implicit method, such as the constant average acceleration method.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ali Akbar Gholampour ◽  
Mehdi Ghassemieh ◽  
Mahdi Karimi-Rad

A new time integration scheme is presented for solving the differential equation of motion with nonlinear stiffness. In this new implicit method, it is assumed that the acceleration varies quadratically within each time step. By increasing the order of acceleration, more terms of the Taylor series are used, which are expected to have responses with better accuracy than the classical methods. By considering this assumption and employing two parameters δ and α, a new family of unconditionally stable schemes is obtained. The order of accuracy, numerical dissipation, and numerical dispersion are used to measure the accuracy of the proposed method. Second order accuracy is achieved for all values of δ and α. The proposed method presents less dissipation at the lower modes in comparison with Newmark's average acceleration, Wilson-θ, and generalized-α methods. Moreover, this second order accurate method can control numerical damping in the higher modes. The numerical dispersion of the proposed method is compared with three unconditionally stable methods, namely, Newmark's average acceleration, Wilson-θ, and generalized-α methods. Furthermore, the overshooting effect of the proposed method is compared with these methods. By evaluating the computational time for analysis with similar time step duration, the proposed method is shown to be faster in comparison with the other methods.


2012 ◽  
Vol 28 (4) ◽  
pp. 665-676
Author(s):  
S.-Y. Chang

ABSTRACTChang explicit method (2007) has been shown to be unconditionally stable for a linear elastic system and any instantaneous stiffness softening system while it is only conditionally stable for any instantaneous stiffness hardening system. Its coefficients of the difference equation for displacement increment are functions of initial tangent stiffness. Since Chang explicit method is unconditionally stable for a linear elastic system and any instantaneous stiffness softening system, its stability range can be enlarged if the initial tangent stiffness is enlarged by an amplification factor and then this amplified initial tangent stiffness is used to determine the coefficients. The detailed implementation of this scheme for Chang explicit method is presented and the feasibility of this scheme is verified.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Shuenn-Yih Chang

An integration algorithm, which integrates the most important advantage of explicit methods of the explicitness of each time step and that of implicit methods of the possibility of unconditional stability, is presented herein. This algorithm is analytically shown to be unconditionally stable for any linear elastic and nonlinear systems except for the instantaneous stiffness hardening systems with the instantaneous degree of nonlinearity larger than 43 based on a linearized stability analysis. Hence, its stability property is better than the previously published algorithm (Chang, 2007, “Improved Explicit Method for Structural Dynamics,” J. Eng. Mech., 133(7), pp. 748–760), which is only conditionally stable for instantaneous stiffness hardening systems although it also possesses unconditional stability for linear elastic and any instantaneous stiffness softening systems. Due to the explicitness of each time step, the possibility of unconditional stability, and comparable accuracy, the proposed algorithm is very promising for a general structural dynamic problem, where only the low frequency responses are of interest since it consumes much less computational efforts when compared with explicit methods, such as the Newmark explicit method, and implicit methods, such as the constant average acceleration method.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Tang ◽  
Hui Qin

Real-time substructure testing (RST) algorithm is a newly developed integration method for real-time hybrid simulation (RTHS) which has structure-dependent and explicit formulations for both displacement and velocity. The most favourable characteristics of the RST algorithm is unconditionally stable for linear and no iterations are needed. In order to fully evaluate the performance of the RST method in solving dynamic problems for nonlinear systems, stability, numerical dispersion, energy dissipation, and overshooting properties are discussed. Stability analysis shows that the RST method is only conditionally stable when applied to nonlinear systems. The upper stability limit increases for stiffness-softening systems with an increasing value of the instantaneous degree of nonlinearity while decreases for stiffness-hardening systems when the instantaneous degree of nonlinearity becomes larger. Meanwhile, the initial damping ratio of the system has a negative impact on the upper stability limit especially for instantaneous stiffness softening systems, and a larger value of the damping ratio will significantly decrease the upper stability limit of the RST method. It is shown in the accuracy analysis that the RST method has relatively smaller period errors and numerical damping ratios for nonlinear systems when compared with other two well-developed algorithms. Three simplified engineering cases are presented to investigate the dynamic performance of the RST method, and the numerical results indicate that this method has a more desirable accuracy than other methods in solving dynamic problems for both linear and nonliner systems.


2005 ◽  
Vol 3 ◽  
pp. 175-181
Author(s):  
C. Bommaraju ◽  
R. Marklein ◽  
P. K. Chinta

Abstract. Numerical methods are extremely useful in solving real-life problems with complex materials and geometries. However, numerical methods in the time domain suffer from artificial numerical dispersion. Standard numerical techniques which are second-order in space and time, like the conventional Finite Difference 3-point (FD3) method, Finite-Difference Time-Domain (FDTD) method, and Finite Integration Technique (FIT) provide estimates of the error of discretized numerical operators rather than the error of the numerical solutions computed using these operators. Here optimally accurate time-domain FD operators which are second-order in time as well as in space are derived. Optimal accuracy means the greatest attainable accuracy for a particular type of scheme, e.g., second-order FD, for some particular grid spacing. The modified operators lead to an implicit scheme. Using the first order Born approximation, this implicit scheme is transformed into a two step explicit scheme, namely predictor-corrector scheme. The stability condition (maximum time step for a given spatial grid interval) for the various modified schemes is roughly equal to that for the corresponding conventional scheme. The modified FD scheme (FDM) attains reduction of numerical dispersion almost by a factor of 40 in 1-D case, compared to the FD3, FDTD, and FIT. The CPU time for the FDM scheme is twice of that required by the FD3 method. The simulated synthetic data for a 2-D P-SV (elastodynamics) problem computed using the modified scheme are 30 times more accurate than synthetics computed using a conventional scheme, at a cost of only 3.5 times as much CPU time. The FDM is of particular interest in the modeling of large scale (spatial dimension is more or equal to one thousand wave lengths or observation time interval is very high compared to reference time step) wave propagation and scattering problems, for instance, in ultrasonic antenna and synthetic scattering data modeling for Non-Destructive Testing (NDT) applications, where other standard numerical methods fail due to numerical dispersion effects. The possibility of extending this method to staggered grid approach is also discussed. The numerical FD3, FDTD, FIT, and FDM results are compared against analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document