Effect of Aluminized Coating on Combined Low and High Cycle Fatigue Life of Turbine Blade at Elevated Temperature

Author(s):  
Cao Chen ◽  
Xiaojun Yan ◽  
Xiaoyong Zhang ◽  
Yingsong Zhang ◽  
Min Gui ◽  
...  

Some cracks were detected on the fir-tree root of turbine blade in an in-service aero-engine, and the aluminized coating was considered to be the main cause of these cracks. To study the effect of aluminized coating on fatigue life of turbine blade, the combined low and high cycle fatigue (CCF) tests are carried out at elevated temperature on both aluminized and untreated turbine blades. Probability analysis of test data is conducted and the result indicates that the median life is decreased by 62.2% due to the effect of the aluminized coating. Further study on the mechanism of crack initiation and propagation has been conducted based on fractography and cross section morphology analysis by using scanning electron microscope (SEM), and the results indicate: (1) The aluminized coating consists of two layers, of which the inner layer is considered to contain the σ phase and it reduces the resistance to fatigue of blade. (2) Many cavities are found in the inner layer of aluminized coating, which lead to the initiation of cracks and result in the reduction of crack initiation life. (3) The marker band widths of aluminized and untreated blade are very close, which indicated the aluminized coating may have no effect on the crack propagation life of the blade.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 445
Author(s):  
Tomoyuki Fujii ◽  
Muhamad Safwan Bin Muhamad Azmi ◽  
Keiichiro Tohgo ◽  
Yoshinobu Shimamura

This paper discusses how the strain gradient influences the fatigue life of carbon steel in the low-cycle and high-cycle fatigue regimes. To obtain fatigue data under different strain distributions, cyclic alternating bending tests using specimens with different thicknesses and cyclic tension–compression tests were conducted on carbon steel for pressure vessels (SPV235). The crack initiation life and total failure life were evaluated via the strain-based approach. The experimental results showed that the crack initiation life became short with decreasing strain gradient from 102 to 106 cycles in fatigue life. On the other hand, the influence of the strain gradient on the total failure life was different from that on the crack initiation life: although the total failure life of the specimen subjected to cyclic tension–compression was also the shortest, the strain gradient did not affect the total failure life of the specimen subjected to cyclic bending from 102 to 106 cycles in fatigue life. This was because the crack propagation life became longer in a thicker specimen. Hence, these experimental results implied that the fatigue crack initiation life could be characterized by not only strain but also the strain gradient in the low-cycle and high-cycle fatigue regimes.


Author(s):  
Hilal Ahmad Shah

The present study deals with the high cycle fatigue (HCF) behavior of a ten wt% Cr steel at ambient also as high temperatures (300–853 K). S–N curves were created at unlike temperatures using an R-ratio of −1. Outcome of mean stress was established over and done with Haigh diagram at 853 K using different R-values. Fatigue life was found to decrease with upsurge in test temperature and stress amplitude. Fatigue life was attempted using Basquin equation. Detailed fracture surface analysis was performed to study the crack initiation and propagation modes towards empathetic the mechanisms of failure at different temperatures.


Author(s):  
Melody Mojib ◽  
Rishi Pahuja ◽  
M. Ramulu ◽  
Dwayne Arola

Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.


1968 ◽  
Vol 90 (4) ◽  
pp. 620-626 ◽  
Author(s):  
A. G. Pickett

A modification of the notch stress procedure for fatigue-life analysis is presented. The importance of considering the mechanics of the specimen and the effects of the notch on specimen mechanics is illustrated by example. The procedure is applied to correlate the results of small specimen tests with large weld defect specimen tests. The significance of crack-initiation life and crack-propagation life and the dependence of these portions of total fatigue life on specimen geometry and loading is developed.


2009 ◽  
Vol 417-418 ◽  
pp. 225-228 ◽  
Author(s):  
Ryuichiro Ebara ◽  
R. Nohara ◽  
Rintaro Ueji ◽  
A. Ogura ◽  
Y. Ishihara ◽  
...  

High cycle fatigue behavior of the representative cold forging die steel, YXR3 with Rockwell C scale hardness number of 60.0 is investigated. Axial fatigue strength of plane and notched bar specimens with stress concentration factor, Kt of 1.5, 2.0 and 2.5 is presented. The emphasis is placed upon the subsurface crack initiation observed on notched specimens failed at number of cycles over than 106 cycles. Crack initiation and propagation mode of cold forging die steel is discussed with respect to fracture surface morphology.


Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Low cycle fatigue life of structural materials in LWR plants decreases remarkably in elevated temperature water depending on strain rate, temperature, water chemistry and material properties. The maximum reduction rate in fatigue life for carbon and low alloy steels is over 100 in severe conditions. Fatigue life is composed of fatigue crack initiation life and consequent propagation life. It is important to know the proportion of crack initiation life to propagation life in water environment when developing a model to estimate fatigue crack initiation life. The beachmark imprinting method was used to monitor fatigue crack initiation and consequent propagation. Environmental test conditions varied widely from severely accelerated conditions of high temperature and dissolved oxygen to mild conditions of lower temperature and oxygen. Fatigue crack initiation life could be determined using the beachmark imprinting method for all test conditions. Based on obtained test results, the susceptibility of each parameter in NWC and the relationships between NWC/NW and environmental fatigue life correction factor Fen under various conditions are discussed, but a good relationship could not be detected due to widely scattered data and a model to predict fatigue crack initiation life could not be proposed.


2007 ◽  
Vol 29-30 ◽  
pp. 117-122 ◽  
Author(s):  
Terry C. Lowe

Recent research on the fatigue properties of nanostructured metals and alloys has shown that they generally possess superior high cycle fatigue performance due largely to improved resistance to crack initiation. However, this advantage is not consistent for all nanostructured metals, nor does it extend to low cycle fatigue. Since nanostructures are designed and controlled at the approximately the same size scale as the defects that influence crack initiation attention to preexisting nanoscale defects is critical for enhancing fatigue life. This paper builds on the state of knowledge of fatigue in nanostructured metals and proposes an approach to understand and improve fatigue life using existing experimental and computational methods for nanostructure design.


Sign in / Sign up

Export Citation Format

Share Document