Experimental Investigation of Heat Transfer in Cavities of Steam Turbine Casings Under Generic Test Rig Conditions

Author(s):  
David Spura ◽  
Gunter Eschmann ◽  
Wieland Uffrecht ◽  
Uwe Gampe

This paper presents the first experimental results of the systematic investigation of forced convection heat transfer in scaled generic models of steam turbine casing side spaces with varied geometric dimensions under fully turbulent air flow. Data were obtained by two redundant low-heat measuring methods. The results from the steady-state inverse method are in good agreement with the data from the local overtemperature method, which was applied via a novel miniaturized heat transfer coefficient (HTC) sensor concept. All experiments were conducted at the new side space test rig “SiSTeR” at TU Dresden. The dependencies of the HTC distributions on the axial widths of the cavity and its inlet and on the eccentricity between them were investigated for Reynolds numbers from Re=40,000 to 115,000 in the annular main flow passage. The measured HTC distributions showed a maximum at the stagnation point where the induced jet impinges on the wall surface, and decreasing values toward the cavity corners. Local values scaled roughly with the main flow Reynolds number. The HTC distributions thereby differed considerably depending on the dimensions and the form of the cavity, ranging from symmetric T-shape to asymmetric L-shape, with upstream or downstream shifted sidewalls.

Author(s):  
David Spura ◽  
Uwe Gampe ◽  
Gunter Eschmann ◽  
Wieland Uffrecht

This paper presents the first experimental results of the systematic investigation of forced convection heat transfer in scaled generic models of steam turbine casing side spaces with varied geometric dimensions under fully turbulent air flow. Data were obtained by two redundant low-heat measuring methods. The results from the steady-state inverse method are in good agreement with the data from the local overtemperature method, which was applied via a novel miniaturized heat transfer coefficient (HTC) sensor concept. All experiments were conducted at the new Side Space Test Rig “SiSTeR” at TU Dresden. The dependencies of the HTC distributions on the axial widths of the cavity and its inlet and on the eccentricity between them were investigated for Reynolds numbers from Re = 40,000 to 115,000 in the annular main flow passage. The measured HTC distributions showed a maximum at the stagnation point where the induced jet impinges on the wall surface, and decreasing values towards the cavity corners. Local values scaled roughly with the main flow Reynolds number. The HTC distributions thereby differed considerably depending on the dimensions and the form of the cavity, ranging from symmetric T-shape to asymmetric L-shape, with upstream or downstream shifted sidewalls.


1984 ◽  
Vol 106 (2) ◽  
pp. 297-303 ◽  
Author(s):  
L. C. Chow ◽  
S. R. Husain ◽  
A. Campo

A numerical investigation was conducted to study the simultaneous effects of free convection and axial conduction on forced-convection heat transfer inside a vertical channel at low Peclet numbers. Insulated entry and exit lengths were provided in order to assess the effect of upstream and downstream energy penetration due to axial conduction. The fluid enters the channel with a parabolic velocity and uniform temperature profiles. A constant-property (except for the buoyancy term), steady-state case was assumed for the analysis. Results were categorized into two main groups, the first being the case where the channel walls were hotter than the entering fluid (heating), and the second being the reverse of the first (cooling). For each group, heat transfer between the fluid and the walls were given as functions of the Grashof, Peclet, and Reynolds numbers.


Author(s):  
Ali Rahimi Gheynani ◽  
Omid Ali Akbari ◽  
Majid Zarringhalam ◽  
Gholamreza Ahmadi Sheikh Shabani ◽  
Abdulwahab A. Alnaqi ◽  
...  

Purpose Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Design/methodology/approach Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure. Findings In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent. Research limitations/implications The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it. Practical implications The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Originality/value This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.


Author(s):  
D. J. Stankiewicz ◽  
T. R. Kirkham

A technique of heat transfer enhancement is investigated whereby the internal span-wise cooling passages of a typical first stage gas turbine blade are modified by the introduction of circumferential ribs. The technique is verified by the use of a test rig incorporating a heated internally ribbed tube operating at the same range of Mach and Reynolds numbers as the turbine blade as well as by a test rig incorporating actual production blades immersed in a heated oil bath.


2016 ◽  
Vol 836 ◽  
pp. 85-89
Author(s):  
Vivien S. Djanali ◽  
Ahmad Nurdian Syah ◽  
Syaiful Rizal

Wake and heat transfer characteristics around a heated circular cylinder were studied numerically in this paper. Heat transfer from a heated cylinder to the freestream flow was in mixed convection regime, with the free convection-bouyancy driven flow in opposite direction to the forced convection-main flow. Numerical simulations were performed for three Reynolds numbers of 100, 135 and 200, with the Richardson (Ri = Gr/Re2) numbers varied from 0 to 1. Results showed that buoyancy force significantly altered wake formation behind the heated cylinder, further resulted in increasing drag and decreasing Nusselt number.


Author(s):  
Nasser Ghorbani Mianroudi ◽  
Mofid Gorji ◽  
Hessam Taherian

In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
K.-H. Weng ◽  
A. Ahmed

The periodic state of laminar flow and heat transfer due to an insulated or isothermal rotating cylinder object in a square cavity is investigated computationally. A finite-volume-based computational methodology utilizing primitive variables is used. Various rotating objects (circle, square, and equilateral triangle) with different sizes are placed in the middle of a square cavity. A combination of a fixed computational grid and a sliding mesh was utilized for the square and triangle shapes. For the insulated and isothermal objects, the cavity is maintained as differentially heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr=5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta<1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners, and the periodic channeling effect of the traversing vertices are clearly elucidated. The simulations of the dynamic flow fields were confirmed against experimental data obtained by particle image velocimetry. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to the conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasiperiodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated with the rotational Reynolds number and shape of the object. For high Re numbers, the performance of the system is independent of the shape of the object. On the other hand, with lowering of the hydraulic diameter (i.e., bigger objects), the triangle and the circle exhibit the highest and lowest heat transfers, respectively. High intensity of the periodic channeling and not its frequency is identified as the cause of the observed enhancement.


2007 ◽  
Vol 129 (11) ◽  
pp. 1494-1505 ◽  
Author(s):  
Arindam Banerjee ◽  
Malcolm J. Andrews

The results of experiments investigating heat transfer from a hot wire in a binary mixture of air and helium are reported. The measurements were made with a constant temperature anemometer at low Reynolds numbers (0.25<Re<1.2) and correlated by treating the data in terms of a suitably defined Reynolds and Nusselt numbers based on the wire diameter. The correlation was obtained by taking into account the temperature dependency of gas properties, properties of binary gas mixtures, and the fluid slip at the probe surfaces as well as gas accommodation effects. The correlation has been used to measure velocity and velocity-density statistics across a buoyancy driven Rayleigh–Taylor mixing layer with a hot wire. The measured values obtained with the correlation agree well with measurements obtained with a more rigorous and extensive calibration technique (at two different overheat ratios). The reported correlation technique can be used as a faster and less expensive method for calibrating hot wires in binary gas mixtures.


2004 ◽  
Vol 127 (3) ◽  
pp. 532-544 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with crossflow in one direction. Jet angle is varied between 30, 60, and 90deg as measured from the target surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer and pressure loss is determined along with the various interactions among these parameters.


Sign in / Sign up

Export Citation Format

Share Document