Prediction of Material Removal Rate for Chemical Mechanical Planarization Using Decision Tree-Based Ensemble Learning

Author(s):  
Zhixiong Li ◽  
Dazhong Wu ◽  
Tianyu Yu

Chemical mechanical planarization (CMP) has been widely used in the semiconductor industry to create planar surfaces with a combination of chemical and mechanical forces. A CMP process is very complex because several chemical and mechanical phenomena (e.g., surface kinetics, electrochemical interfaces, contact mechanics, stress mechanics, hydrodynamics, and tribochemistry) are involved. Predicting the material removal rate (MRR) in a CMP process with sufficient accuracy is essential to achieving uniform surface finish. While physics-based methods have been introduced to predict MRRs, little research has been reported on monitoring and predictive modeling of the MRR in CMP. This paper presents a novel decision tree-based ensemble learning algorithm that can train the predictive model of the MRR. The stacking technique is used to combine three decision tree-based learning algorithms, including the random forests (RF), gradient boosting trees (GBT), and extremely randomized trees (ERT), via a meta-regressor. The proposed method is demonstrated on the data collected from a CMP tool that removes material from the surface of wafers. Experimental results have shown that the decision tree-based ensemble learning algorithm using stacking can predict the MRR in the CMP process with very high accuracy.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhixiong Li ◽  
Dazhong Wu

Chemical mechanical polishing (CMP) has been widely used in the semiconductor sector for creating planar surfaces with the combination of chemical and mechanical forces. CMP is very complex because several chemical and mechanical phenomena (e.g., surface kinetics, contact mechanics, stress mechanics, and tribochemistry) are involved. Due to the complexity of the CMP process, it is very challenging to predict material removal rate (MRR) with sufficient accuracy. While physics-based methods have been introduced to predict MRR, little research has been reported on data-driven predictive modeling of MRR in the CMP process. This paper presents a novel decision tree-based ensemble learning algorithm that trains a predictive model of MRR on condition monitoring data. A stacking technique is used to combine three decision tree-based learning algorithms, including the random forests (RF), gradient boosting trees (GBT), and extremely randomized trees (ERT). The proposed method is demonstrated on the data collected from a wafer CMP tool that removes material from the surface of the wafer. Experimental results have shown that the decision tree-based ensemble learning algorithm can predict MRR in the CMP process with very high accuracy.


2021 ◽  
Author(s):  
Liqiao Xia ◽  
Pai Zheng ◽  
Chao Liu

Abstract Material removal rate (MRR) plays a critical role in the operation of chemical mechanical planarization (CMP) process in the semiconductor industry. To date, many physics-based and data-driven approaches have been proposed to predict the MRR. Nevertheless, most of the existing methodologies neglect the potential source of its well-organized and underlying equipment structure containing interaction mechanisms among different components. To address its limitation, this paper proposes a novel hypergraph neural network-based approach for predicting the MRR in CMP. Two main scientific contributions are presented in this work: 1) establishing a generic modeling technique to construct the complex equipment knowledge graph with a hypergraph form base on the comprehensive understanding and analysis of equipment structure and mechanism, and 2) proposing a novel prediction method by combining the Recurrent Neural Network based model and the Hypergraph Neural Network to learn the complex data correlation and high-order representation base on the Spatio-temporal equipment hypergraph. To validate the proposed approach, a case study is conducted based on an open-source dataset. The experimental results prove that the proposed model can capture the hidden data correlation effectively. It is also envisioned that the proposed approach has great potentials to be applied in other similar smart manufacturing scenarios.


2015 ◽  
Vol 1790 ◽  
pp. 19-24
Author(s):  
Ayse Karagoz ◽  
James Mal ◽  
G. Bahar Basim

ABSTRACTThe continuous trend of achieving more complex microelectronics with smaller nodes yet larger wafer sizes in microelectronics manufacturing lead to aggressive development requirements for chemical mechanical planarization (CMP) process. Particularly, beyond the 14 nm technology the development needs made it a must to introduce high mobility channel materials such as Ge. CMP is an enabler for integration of these new materials into future devices. In this study, we implemented a design of experiment (DOE) methodology in order to understand the optimized CMP slurry parameters such as optimal concentration of surface active agent (sodium dodecyl sulfate-SDS), concentration of abrasive particles and pH from the viewpoint of high removal rate and selectivity while maintaining a defect free surface finish. The responses examined were particle size distribution (slurry stability), zeta potential, material removal rate (MRR) and the surface defectivity as a function of the selected design variables. The impact of fumed silica particle loadings, oxidizer (H2O2) concentration, SDS surfactant concentration and pH were analyzed on Ge/silica selectivity through material removal rate (MRR) surface roughness and defectivity analyses.


Sign in / Sign up

Export Citation Format

Share Document