Estimation of Remaining Useful Lifetime of Lithium-Ion Battery Based on Acoustic Emission Measurements

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Nejra Beganovic ◽  
Dirk Söffker

Lithium-ion battery (LIB) utilization as energy storage device in electric and hybrid-electric vehicles, wind turbine systems, a number of portable electrical devices, and in many other application fields is encouraged due to LIB small size alongside high energy density. Monitoring of LIB health state parameters, calculation of additional LIB operating parameters, and the fulfillment of safety requirements are provided through battery management systems. Prediction of remaining useful lifetime (RUL) of LIB and state-of-health (SoH) estimation are identified as still challenging and not completely solved tasks. In this contribution, previous works on RUL/SoH estimation, mainly relied on modeling of underlying electrochemical processes inside LIB, are compared with newly developed approach. The proposed approach utilizes acoustic emission measurements for LIB aging indicators estimation. Developed model for RUL estimation is closely related to frequency spectrum analysis of captured acoustic emission (AE) signal. Features selected from AE measurements are considered as model inputs. The novelty of this approach is the opportunity to estimate RUL/SoH of LIB without necessity to capture some intermediate variables, only indirectly related to RUL/SoH (charging/discharging currents, temperature, and similar). The proposed approach provides the possibility to obtain reliable information about current RUL/SoH without the knowledge about underlying physical processes occurred in LIB. Experimental data sets gathered from LIB aging tests are used for model establishment, training, and validation. The experimental results demonstrate the applicability of the novel approach.

2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

Author(s):  
Umair Nisar ◽  
Nitin Muralidharan ◽  
Rachid Essehli ◽  
Ruhul Amin ◽  
Ilias Belharouak

2016 ◽  
Vol 9 (6) ◽  
pp. 2152-2158 ◽  
Author(s):  
Joo Hyeong Lee ◽  
Chong S. Yoon ◽  
Jang-Yeon Hwang ◽  
Sung-Jin Kim ◽  
Filippo Maglia ◽  
...  

A Li-rechargeable battery system based on state-of-the-art cathode and anode technologies demonstrated high energy density, meeting demands for vehicle application.


2019 ◽  
Vol 1153 ◽  
pp. 012074 ◽  
Author(s):  
Hendri Widiyandari ◽  
Atika Nadya Sukmawati ◽  
Heri Sutanto ◽  
Cornelius Yudha ◽  
Agus Purwanto

2020 ◽  
Vol 22 (17) ◽  
pp. 9204-9209 ◽  
Author(s):  
Yigang Yan ◽  
Wilke Dononelli ◽  
Mathias Jørgensen ◽  
Jakob B. Grinderslev ◽  
Young-Su Lee ◽  
...  

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery.


2018 ◽  
Vol 10 (4) ◽  
Author(s):  
Yaotang Zhong ◽  
Bin Li ◽  
Shumin Li ◽  
Shuyuan Xu ◽  
Zhenghui Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document