scholarly journals Blackbox Optimization for Aircraft Engine Blades With Contact Interfaces

Author(s):  
Julien Lainé ◽  
Elsa Piollet ◽  
Florence Nyssen ◽  
Alain Batailly

In modern aircraft engines, reduced operating clearances between rotating blade tips and the surrounding casing increase the risk of blade/casing structural contacts, which may lead to high blade vibration levels. Therefore, structural contacts must now be accounted for as early as in the engine design stage. As the vibrations resulting from contact are intrinsically nonlinear, direct optimization of blade shapes based on vibration simulation is not realistic in an industrial context. A recent study on a blade featuring significantly lower vibration levels following contact event identified a potential criterion to estimate a blade sensitivity to contact interactions. This criterion is based on the notion of dynamic clearance, a quantity describing the evolution of the blade/casing clearance as the blade vibrates along one of its free-vibration modes. This paper presents an optimization procedure, which minimizes the dynamic clearance as a first step toward the integration of structural criteria in blade design. A dedicated blade geometry parameterization is introduced to allow for an efficient optimization of the blade shape. The optimization procedure is applied to the three-dimensional (3D) properties of two different blades. In both cases, initial and optimized blades are compared by means of an in-house numerical tool dedicated to the simulation of structural contact events with a surrounding casing. The simulations focus on rubbing phenomena, involving the vibration of a single blade. Simulation results show a significant reduction of vibration levels following contact interactions for the optimized blades. Critical speeds related to the mode on which the dynamic clearance is computed are successfully eliminated by the blade shape optimization. For the investigated blade geometries, backward sweep and backward lean angles are associated with reduced contact interactions compared to forward sweep and forward lean angles.

Author(s):  
Vitaly Gnesin ◽  
Lyubov Kolodyazhnaya ◽  
Yuriy Bykov ◽  
Igor Kravchenko ◽  
Oleksii Petrov ◽  
...  

Aeroelasticity problems arise in the different fields of technology. The accident-free operation of the airborne machines is one of the most important factors that should be taken into account during their designing and upgrading. The solution of this problem involves the implementation of many measures to provide the system reliability on the whole, including its individual elements, in particular aircraft engine, its fan whose wide-chord blades can be exposed to the wreckage due to different reasons including the aeroelastic effects, i.e. self-excited vibrations. As a result, the origination of the aeroelastic phenomenon (flutter) in design and off-design modes should be eliminated at the stage of the design and operational development of the rotor wheel that would result in a considerable increase of the level of reliability of the aircraft engine. Based on the analysis of the available methods used for the flutter prediction we can draw a conclusion that the most promising approach to the analysis of the aeroelastic behavior of the blade ring of fan is the use of the method based on the three-dimensional model of the aerodynamics and dynamics (the method used for the solution of the coupled aeroelastic problem). By solving the coupled aeroelastic problem of the nonstationary aerodynamics and elastic vibrations of the blades we can get the amplitude –frequency blade vibration spectrum for the three-dimensional gas flow, including forced vibrations and self-excided vibrations in order to increase the reliability of the blade row of turbine machines. The developed numerical method was used for the analysis of the aeroelastic behavior of the blade ring of the fan mounted in the airborne engine for the operation mode of 3520 rmp with appropriate boundary conditions at the inlet and outlet behind the ring. The computation data confirmed the origination of self-vibrations for the given fan operation mode.


2021 ◽  
pp. 1475472X2110238
Author(s):  
Douglas M Nark ◽  
Michael G Jones

The attenuation of fan tones remains an important aspect of fan noise reduction for high bypass ratio turbofan engines. However, as fan design considerations have evolved, the simultaneous reduction of broadband fan noise levels has gained interest. Advanced manufacturing techniques have also opened new possibilities for the practical implementation of broadband liner concepts. To effectively address these elements, practical acoustic liner design methodologies must provide the capability to efficiently predict the acoustic benefits of novel liner configurations. This paper describes such a methodology to design and evaluate multiple candidate liner configurations using realistic, three dimensional geometries for which minimal source information is available. The development of the design methodology has been guided by a series of studies culminating in the design and flight test of a low drag, broadband inlet liner. The excellent component and system noise benefits obtained in this test demonstrate the effectiveness of the broadband liner design process. They also illustrate the value of the approach in concurrently evaluating multiple liner designs and their application to various locations within the aircraft engine nacelle. Thus, the design methodology may be utilized with increased confidence to investigate novel liner configurations in future design studies.


Author(s):  
Ahmed M Nagib Elmekawy ◽  
Hassan A Hassan Saeed ◽  
Sadek Z Kassab

Three-dimensional CFD simulations are carried out to study the increase of power generated from Savonius vertical axis wind turbines by modifying the blade shape and blade angel of twist. Twisting angle of the classical blade are varied and several proposed novel blade shapes are introduced to enhance the performance of the wind turbine. CFD simulations have been performed using sliding mesh technique of ANSYS software. Four turbulence models; realizable k -[Formula: see text], standard k - [Formula: see text], SST transition and SST k -[Formula: see text] are utilized in the simulations. The blade twisting angle has been modified for the proposed dimensions and wind speed. The introduced novel blade increased the power generated compared to the classical shapes. The two proposed novel blades achieved better power coefficients. One of the proposed models achieved an increase of 31% and the other one achieved 32.2% when compared to the classical rotor shape. The optimum twist angel for the two proposed models achieved 5.66% and 5.69% when compared with zero angle of twist.


Author(s):  
Deepika Saini ◽  
Sanoj Kumar ◽  
Manoj K. Singh ◽  
Musrrat Ali

AbstractThe key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.


1986 ◽  
Vol 64 (11) ◽  
pp. 2624-2633 ◽  
Author(s):  
Peter F. Major ◽  
Lawrence M. Dill ◽  
David M. Eaves

Three-dimensional interactions between grouped aerial predators (frontal discs of aircraft engines), either linearly arrayed or clustered, and flocks of small birds were studied using interactive computer simulation techniques. Each predator modelled was orders of magnitude larger than an individual prey, but the prey flock was larger than each predator. Expected numbers of individual prey captured from flocks were determined for various predator speeds and trajectories, flock–predator initial distances and angles, and flock sizes, shapes, densities, trajectories, and speeds. Generally, larger predators and clustered predators caught more prey. The simulation techniques employed in this study may also prove useful in studies of predator–prey interactions between schools or swarms of small aquatic prey species and their much larger vertebrate predators, such as mysticete cetaceans.The study also provides a method to study problems associated with turbine aircraft engine damage caused by the ingestion of small flocking birds, as well as net sampling of organisms in open aquatic environments.


Author(s):  
Walter Sextro ◽  
Karl Popp ◽  
Ivo Wolter

Friction dampers are installed underneath the blade platforms to improve the reliability. Because of centrifugal forces the dampers are pressed onto the platforms. Due to dry friction and the relative motion between blades and dampers, energy is dissipated, which results in a reduction of blade vibration amplitudes. The geometry of the contact is in many cases like a Hertzian line contact. A three-dimensional motion of the blades results in a two-dimensional motion of one contact line of the friction dampers in the contact plane. An experiment with one friction damper between two blades is used to verify the two-dimensional contact model including microslip. By optimizing the friction dampers masses, the best damping effects are obtained. Finally, different methods are shown to calculate the envelope of a three-dimensional response of a detuned bladed disk assembly (V84.3-4th-stage turbine blade) with friction dampers.


Author(s):  
Shiyong Yang ◽  
Kikuo Nezu

Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


Author(s):  
Florence Nyssen ◽  
Alain Batailly

Abstract In this work, the impact of small mistuning on rotor/stator contact interactions is investigated. First, a detailed study of a rotor/stator interaction between the first bending modes and the second engine order is presented in the tuned case. Then, a numerical investigation on the effect of mistuning on the studied rotor/stator contact interaction is carried out. In particular, a stochastic analysis is performed to evaluate the robustness of the interaction with respect to the mistuning level. Simulations are conducted using a reduced order model (ROM) of an industrial bladed disk that combines both physical degrees of freedom (along blades tip for contact treatment) and modal coordinates. Mistuning is introduced in the tuned ROM by means of a modified version of the component mode mistuning method that allows to keep physical degrees of freedom within the reduced basis. Nonlinear amplification factors, i.e. the amplification factors in the context of contact nonlinearities, are compared with their linear counterparts, the latter are computed using a linear forcing on each blade using a two nodal diameters traveling wave excitation on the mistuned and the tuned bladed disk. The comparison between the linear and nonlinear amplification factor for each sample highlights that no correlation exists between a mistuning pattern leading to high amplifications in a linear context or when contact nonlinearities are taken into account. Therefore, dedicated analyses on the effect of mistuning should be undertaken with contact nonlinearities considerations at the design stage especially if intentional mistuning is considered.


Sign in / Sign up

Export Citation Format

Share Document