The Effect of Articular Cartilage Focal Defect Size and Location in Whole Knee Biomechanics Models

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Benjamin C. Marchi ◽  
Ellen M. Arruda ◽  
Rhima M. Coleman

Abstract Articular cartilage focal defects are common soft tissue injuries potentially linked to osteoarthritis (OA) development. Although several defect characteristics likely contribute to osteoarthritis, their relationship to local tissue deformation remains unclear. Using finite element models with various femoral cartilage geometries, we explore how defects change cartilage deformation and joint kinematics assuming loading representative of the maximum joint compression during the stance phase of gait. We show how defects, in combination with location-dependent cartilage mechanics, alter deformation in affected and opposing cartilages, as well as joint kinematics. Small and average sized defects increased maximum compressive strains by approximately 50% and 100%, respectively, compared to healthy cartilage. Shifts in the spatial locations of maximum compressive strains of defect containing models were also observed, resulting in loading of cartilage regions with reduced initial stiffnesses supporting the new, elevated loading environments. Simulated osteoarthritis (modeled as a global reduction in mean cartilage stiffness) did not significantly alter joint kinematics, but exacerbated tissue deformation. Femoral defects were also found to affect healthy tibial cartilage deformations. Lateral femoral defects increased tibial cartilage maximum compressive strains by 25%, while small and average sized medial defects exhibited decreases of 6% and 15%, respectively, compared to healthy cartilage. Femoral defects also affected the spatial distributions of deformation across the articular surfaces. These deviations are especially meaningful in the context of cartilage with location-dependent mechanics, leading to increases in peak contact stresses supported by the cartilage of between 11% and 34% over healthy cartilage.

1986 ◽  
Vol 29 (4) ◽  
pp. 544-548 ◽  
Author(s):  
Joel C. Kahane ◽  
Alice R. Kahn

Collagen fiber organization in the articular surfaces of the cricoarytenoid joint (CAJ) was studied using a pinpricking technique used in biomechanical research in orthopedics. Four male human formalin preserved specimens (3 months to 20 years) and 6 male freshly autopsied specimens (19 to 30 yrs) were studied. Specimens were dissected using the stereomicroscope. Distinctive patterns of articular cartilage slits reflect the orientation of collagen fibers in the cricoid and arytenoid articular surfaces. The orientation of the collagen fibers reinforces the articular surfaces along the principle path of CAJ motion. No age related differences were found. This suggests that the orientation of collagen fibers in the CAJ articular surfaces is prenatally determined rather than significantly influenced by postnatal mechanical factors.


1988 ◽  
Vol 90 (4) ◽  
pp. 635-643 ◽  
Author(s):  
C.A. Poole ◽  
S. Ayad ◽  
J.R. Schofield

A heterogenous population of intact chondrons extracted from low-speed homogenates of canine tibial cartilage were stained by indirect immunofluorescence methods with a polyclonal antibody to type VI collagen. In each of the four chondron groups examined, anti-(type VI collagen) anti-serum was concentrated in the capsule immediately adjacent to the chondrocyte complex. A constant but weaker fluorescent reaction persists in ‘tail-like’ extensions common to single and double chondrons and in the medial connections between adjacent chondrons in linear columns and aggregated clusters. Frayed collagen bundles typical of chondron preparations did not react with the antibody. Similarly, chondrons reacted with normal rabbit serum, or treated by type VI collagen extraction procedures, showed no staining reaction. The differential localization of type VI collagen in the pericellular capsule is discussed in relation to the maintenance of the chondron's integrity and to the protection of the chondrocyte during dynamic compressive loading.


2018 ◽  
Vol 31 (02) ◽  
pp. 108-113 ◽  
Author(s):  
Kei Hayashi ◽  
Brian Caserto ◽  
Mary Norman ◽  
Hollis Potter ◽  
Matthew Koff ◽  
...  

Objectives The purpose of this study was to evaluate regional differences of canine stifle articular cartilage using the quantitative magnetic resonance imaging (MRI) technique of T2 mapping. Methods Fourteen stifle joints from seven juvenile male Beagle dogs with no evidence or prior history of pelvic limb lameness were imaged ex vivo using standard of care fast spin echo MRI and quantitative T2 mapping protocols. Regions of interest were compared between the femoral, patellar and tibial cartilages, as well as between the lateral and medial femorotibial compartments. Limbs were processed for histology with standard stains to confirm normal cartilage. Results The average T2 value of femoral trochlear cartilage (37.5 ± 2.3 ms) was significantly prolonged (p < 0.0001) as compared with the femoral condylar, patellar and tibial condylar cartilages (33.1 ± 1.5 ms, 32.8 ± 2.3 ms, and 28.0 ± 1.7 ms, respectively). When comparing medial and lateral condylar compartments, the lateral femoral condylar cartilage had the longest T2 values (34.8 ± 2.8 ms), as compared with the medial femoral condylar cartilage (30.9 ± 1.9 ms) and lateral tibial cartilage (29.1 ± 2.3 ms), while the medial tibial cartilage had the shortest T2 values (26.7 ± 2.4 ms). Clinical Significance As seen in other species, regional differences in T2 values of the canine stifle joint are identified. Understanding normal regions of anticipated prolongation in different joint compartments is needed when using quantitative imaging in models of canine osteoarthritis.


1998 ◽  
Vol 39 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Y. Kawahara ◽  
M. Uetani ◽  
N. Nakahara ◽  
Y. Doiguchi ◽  
M. Nishiguchi ◽  
...  

Purpose: the objective was to assess the efficacy of fast spin-echo (FSE) imaging in the detection of articular cartilage abnormality in osteoarthrosis of the knee Material and Methods: We studied 356 articular surfaces in 73 knees that had been examined by both MR imaging and arthroscopy. the MR images were obtained with FSE imaging (TR/TE 4200/100) on a 0.5 T unit. the surface abnormalities of the articular cartilage that were detected by MR imaging were compared with the arthroscopic findings Results: the overall sensitivity and specificity of MR in detecting chondral abnormalities were 60.5% (158/261) and 93.7% (89/95) respectively. MR imaging was more sensitive to the higher grade lesions: 31.8% (34/107) in grade 1; 72.4% (71/98) in grade 2; 93.5% (43/46) in grade 3; and 100% (10/10) in grade 4. the MR and arthroscopic grades were the same in 46.9% (167/356), and differed by no more than 1 grade in 90.2% (321/356) and 2 grades in 99.2% (353/356). the correlation between arthroscopic and MR grading scores was highly significant with a correlation coefficient of 0.705 ( p<0.0001) Conclusion: FSE sequence was less sensitive to mild cartilage abnormality but useful in detecting moderate to severe abnormality and in evaluating the degree of articular cartilage abnormality


2005 ◽  
Vol 3 (5) ◽  
pp. 379-385 ◽  
Author(s):  
Stefan A. König ◽  
Axel Goldammer ◽  
Hans-Ekkehart Vitzthum

>Object. The goal of this project was to measure vertebral dimensions at the craniocervical junction and to investigate degenerative changes in this region and their correlations with the anatomical data. These studies will assist in an understanding of biomechanical conditions in this region, which are clinically relevant in cases of cervicogenic headaches and vertigo. Methods. The authors examined 30 cadaveric specimens obtained from patients ranging in age from 24 to 88 years at death. Measurements of angles of the vertebrae were conducted using an imprint method. Microsections of osseous endplates and articular cartilage were graded according to their degrees of degeneration by using the Petersson classification (0, no sign of degeneration; I, superficial degeneration with several fragmentations; II, deeper degeneration with cartilaginous disintegration and penetrating ulceration; or III, complete cartilaginous degeneration with the appearance of subchondral bone in > 50% of the articular surface). The authors found Grade I changes in 100% of the occiput specimens. In the superior articular cartilage of C-1 no changes (Grade 0) were found in two specimens, whereas 6% of the specimens exhibited Grade II changes and 89% exhibited Grade I changes. In the inferior articular cartilage of C-1, 57% of the specimens displayed Grade I changes, 14% Grade II, and 20% Grade III changes. In the superior articular cartilage of C-2, 62.5% of the specimens displayed Grade I changes and 25% Grade II changes. At the occiput—C1 level the authors found a higher frequency of degeneration at the upper left articular surface of the atlas (Quadrants 1 and 3), and at the C1–2 level they found a higher frequency of degeneration at the upper left and upper right articular surfaces of the axis (Quadrants 2 and 3, respectively). Using the McNemar test, the authors investigated the frequency of affection of single quadrants in a left—right side comparison (lateral reversal). Significant differences were identified for Quadrant 2 of the upper left articular surface of C-2 and Quadrant 3 of the upper right articular surface of C-2. These results correlate with the analysis of single articular surfaces of the axis, but contradict the results for the atlas, in which no significant difference in the left—right side comparison was found. Conclusions. Severe degeneration in the atlantooccipital joints appears to be a rare condition, with no Grade II or III degeneration found in the occipital condyles and 6% Grade I, 89% Grade II, but no Grade III changes in the superior articular cartilage of the atlas. Degeneration of the inferior articular cartilage of C-1 and the superior articular cartilage of C-2 indicates that the atlantoaxial joint faces more intense mechanical exposure, which is increased at the upper joint surfaces.


1994 ◽  
Vol 19 (3) ◽  
pp. 306-309 ◽  
Author(s):  
A. O. JEFFRIES ◽  
M. A. C. CRAIGEN ◽  
J. K. STANLEY

The incidence and patterns of degenerative changes within the radio-carpal joint were studied in 138 specimens of elderly cadaveric wrists. Articular cartilage wear of varying severity was seen on the distal radial and ulnar articular surfaces in 27% of cases and on the proximal row articular surfaces in 54%. Wear was most commonly seen on the radial styloid and corresponding area of the scaphoid. The triangular fibrocartilaginous complex (TFCC) was found to be degenerate or torn in 24%. Central degenerative perforation was commonly associated with articular cartilage wear on the ulnar head and the ulnar half of the lunate. No significant wear pattern was seen in those wrists with peripheral linear (i.e. traumatic) TFCC tears. Interosseous scapho-lunate and luno-triquetral ligament disruptions were found in less than 10%, suggesting that disruption of these ligaments is usually traumatic and not degenerative.


2020 ◽  
Author(s):  
Carolyn B Rorick ◽  
Jordyn A Mitchell ◽  
Ruth H Bledsoe ◽  
Michael L Floren ◽  
Ross M Wilkins

Abstract Background : Despite improvements in treatment options and techniques, articular cartilage repair continues to be a challenge for orthopedic surgeons. This study provides data to support that the 2-year Cryopreserved, Thin, Laser-Etched Osteochondral Allograft (T-LE Allograft) embodies the necessary viable cells, protein signaling, and extracellular matrix (ECM) scaffold found in fresh cartilage in order to facilitate a positive clinical outcome for cartilage defect replacement and repair. Methods: Viability testing was performed by digestion of the graft, cells were counted using a trypan blue assay. Growth factor and ECM protein content was quantified using biochemical assays. A fixation model was introduced to assess tissue outgrowth capability and cellular metabolic activity in vitro . Histological and immunofluorescence staining were employed to confirm tissue architecture, cellular outgrowth, and presence of ECM. The effects of the T-LE Allograft to signal bone marrow-derived mesenchymal stem cell (BM-MSC) migration and chondrogenic differentiation were evaluated using in vitro co-culture assays. Immunogenicity testing was completed using flow cytometry analysis of cells obtained from digested T-LE Allografts and fresh articular cartilage. Results: Average viability of the T-LE Allograft post-thaw was found to be 94.97 ±3.38%, compared to 98.83 ±0.43% for fresh articular cartilage. Explant studies from the in vitro fixation model confirmed the long-term viability and proliferative capacity of these chondrocytes. Growth factor and ECM proteins were quantified for the T-LE Allograft revealing similar profiles to fresh articular cartilage. Cellular signaling of the T-LE Allograft and fresh articular cartilage both exhibited similar outcomes in co-culture for migration and differentiation of BM-MSCs. Flow cytometry testing confirmed the T-LE Allograft is immune-privileged as it is negative for immunogenic markers and positive for chondrogenic markers. Conclusions: Using our novel, proprietary cryopreservation method, the T-LE Allograft retains excellent cellular viability, with native-like growth factor and ECM composition of healthy cartilage after two years of storage at -80 o C. The successful cryopreservation of the T-LE Allograft alleviates the limited availably of conventionally used fresh osteochondral allograft (OCA), by providing a readily available and simple to use allograft solution. The results presented in this paper supports clinical data that the T-LE Allograft can be a successful option for repairing chondral defects.


2021 ◽  
Author(s):  
◽  
Kathrin Maly

Osteoarthritis (OA) is a slowly progressing disease, resulting in the degradation of cartilage and the loss of joint functionality. The cartilage extracellular matrix (ECM) is degraded and undergoes remodelling in OA progression. Chondrocytes start to express degrading proteases but are also reactivated and synthesise ECM proteins. The spectrum of these newly synthesised proteins and their involvement in OA specific processes and cartilage repair is hardly investigated. Human articular cartilage obtained from OA patients undergoing knee replacement surgery was evaluated according to the OARSI histopathology grading system. Healthy, non-OA cartilage samples were used as controls. The expression and distribution of thrombospondin-4 (TSP-4) and the closely related COMP were analysed on the gene level by PCR and on the protein level by immunohistology and immunoblot assays. The potential of TSP-4 as a diagnostic marker was evaluated by immunoblot assays, using serum samples from OA patients and healthy individuals. The functional role of both proteins was further investigated in in vitro studies using chondrocytes isolated from femoral condyles of healthy pigs. The effect of COMP and TSP-4 on chondrocyte migration and attachment was investigated via transwell and attachment assays, respectively. Moreover, the potential of COMP and TSP-4 to modulate the chondrocyte phenotype by inducing gene expression, ECM protein synthesis and matrix formation was investigated by immunofluorescence staining and qPCR. The activation of cartilage relevant signalling pathways was investigated by immunoblot assays. These results showed for the first time the presence of TSP-4 in articular cartilage. Its amount dramatically increased in OA compared to healthy cartilage and correlated positively with OA severity. In healthy cartilage TSP-4 was primarily found in the superficial zone while it was wider distributed in the middle and deeper zones of OA cartilage. The amount of specific TSP-4 fragments was increased in sera of OA patients compared to healthy controls, indicating a potential to serve as an OA biomarker. COMP was ubiquitously expressed in healthy cartilage but degraded in early as well as re-expressed in late-stage OA. The overall protein levels between OA severity grades were comparable. Contrary to TSP-4, COMP was localised primarily in the upper zone of OA cartilage, in particular in areas with severe damage. COMP could attract chondrocytes and facilitated their attachment, while TSP-4 did not affect these processes. COMP and TSP 4 were generally weak inducers of gene expression, although both could induce COL2A1 and TSP-4 additionally COL12A1 and ACAN after 6 h. Correlating data were obtained on the protein level: COMP and TSP-4 promoted the synthesis and matrix formation of collagen II, collagen IX, collagen XII and proteoglycans. In parallel, both proteins suppressed chondrocyte hypertrophy and dedifferentiation by reducing collagen X and collagen I. By analysing the effect of COMP and TSP-4 on intracellular signalling, both proteins induced Erk1/2 phosphorylation and TSP-4 could further promote Smad2/3 signalling induced by TGF-β1. None of the two proteins had a direct or modulatory effect on Smad1/5/9 dependent signalling. In summary, COMP and TSP-4 contribute to ECM maintenance and repair by inducing the expression of essential ECM proteins and suppressing chondrocyte dedifferentiation. These effects might be mediated by Erk1/2 phosphorylation. The presented data demonstrate an important functional role of COMP and TSP-4 in both healthy and OA cartilage and provide a basis for further studies on their potential in clinical applications for OA diagnosis and treatment.


2020 ◽  
Author(s):  
Carolyn B Rorick ◽  
Jordyn A Mitchell ◽  
Ruth H Bledsoe ◽  
Michael L Floren ◽  
Ross M Wilkins

Abstract Background : Despite improvements in treatment options and techniques, articular cartilage repair continues to be a challenge for orthopedic surgeons. This study provides data to support that the 2-year Cryopreserved, Thin, Laser-Etched Osteochondral Allograft (T-LE Allograft) embodies the necessary viable cells, protein signaling, and extracellular matrix (ECM) scaffold found in fresh cartilage in order to facilitate a positive clinical outcome for cartilage defect replacement and repair. Methods: Viability testing was performed by digestion of the graft, cells were counted using a trypan blue assay. Growth factor and ECM protein content was quantified using biochemical assays. A fixation model was introduced to assess tissue outgrowth capability and cellular metabolic activity in vitro . Histological and immunofluorescence staining were employed to confirm tissue architecture, cellular outgrowth, and presence of ECM. The effects of the T-LE Allograft to signal bone marrow-derived mesenchymal stem cell (BM-MSC) migration and chondrogenic differentiation were evaluated using in vitro co-culture assays. Immunogenicity testing was completed using flow cytometry analysis of cells obtained from digested T-LE Allografts and fresh articular cartilage. Results: Average viability of the T-LE Allograft post-thaw was found to be 94.97 ±3.38%, compared to 98.83 ±0.43% for fresh articular cartilage. Explant studies from the in vitro fixation model confirmed the long-term viability and proliferative capacity of these chondrocytes. Growth factor and ECM proteins were quantified for the T-LE Allograft revealing similar profiles to fresh articular cartilage. Cellular signaling of the T-LE Allograft and fresh articular cartilage both exhibited similar outcomes in co-culture for migration and differentiation of BM-MSCs. Flow cytometry testing confirmed the T-LE Allograft is immune-privileged as it is negative for immunogenic markers and positive for chondrogenic markers. Conclusions: Using our novel, proprietary cryopreservation method, the T-LE Allograft retains excellent cellular viability, with native-like growth factor and ECM composition of healthy cartilage after two years of storage at -80 o C. The successful cryopreservation of the T-LE Allograft alleviates the limited availably of conventionally used fresh osteochondral allograft (OCA), by providing a readily available and simple to use allograft solution. The results presented in this paper supports clinical data that the T-LE Allograft can be a successful option for repairing chondral defects.


Sign in / Sign up

Export Citation Format

Share Document