Shell Side Single-Phase Experimental Heat Transfer Analysis of a Vertically Oriented Single Segmental Baffle Bundle With Dimpled Tubes

Author(s):  
Ahmad Abbas ◽  
Tauseef Ismail ◽  
Zahid Ayub ◽  
Adnan Ayub ◽  
Taqi Ahmad Cheema ◽  
...  

Abstract This paper presents single-phase shell side heat transfer performance of a vertically oriented shell and tube bundle. Steady-state single-phase experiments were conducted to determine the shell side Nusselt number with water and water/glycol solution as working fluids for both counter and parallel flow configurations. Experiments were carried out for Reynolds number varying from 3000 to 15,000 with Prandtl number ranging from 10 to 20. Counter flow configuration showed slightly better performance. Nusselt number correlations are presented for both configurations using a modified Wilson plot method. Comparison of results with previous studies and commercial software are presented. Thermal performance for all flow rate conditions showed close comparison to the results from a reputable commercial software. The correlation was further validated by comparing results for 30 different cases to calculations from 2 widely used commercial softwares. Comparison showed that the correlation can be used for the design of single-phase single segmental shell and tube heat exchangers.

2014 ◽  
Vol 68 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Mica Vukic ◽  
Mladen Tomic ◽  
Predrag Zivkovic ◽  
Gradimir Ilic

In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube) in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, along the shell-and-tube heat exchanger (at positions defined in advance) have been measured. Special attention was made to the investigation of the segmental baffles number influence of the shell-and-tube heat exchanger effectiveness.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shubham Sharma ◽  
Shalab Sharma ◽  
Mandeep Singh ◽  
Parampreet Singh ◽  
Rasmeet Singh ◽  
...  

In this numerical study, the heat transfer performance of shell-and-tube heat exchangers (STHXs) has been compared for two different tube arrangements. STHX having 21 and 24 tubes arranged in the inline and staggered grid has been considered for heat transfer analysis. Shell-and-tube heat exchanger with staggered grid arrangement has been observed to provide lesser thermal stratification as compared to the inline arrangement. Further, the study of variation in the mass flow rate of shell-side fluid having constant tube-side flow rate has been conducted for staggered grid structure STHX. The mass flow rate for the shell side has been varied from 0.1 kg/s to 0.5 kg/s, respectively, keeping the tube-side mass flow rate as constant at 0.25 kg/s. The influence of bulk mass-influx transfer rate on heat transfer efficiency, effectiveness, and pressure drop of shell-tube heat exchangers has been analyzed. CFD results were compared with analytical solutions, and it shows a good agreement between them. It has been observed that pressure drop is minimum for the flow rate of 0.1 kg/s, and outlet temperatures at the shell side and tube side have been predicted to be 40.94°C and 63.63°C, respectively.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1794 ◽  
Author(s):  
Zhe Xu ◽  
Yingqing Guo ◽  
Haotian Mao ◽  
Fuqiang Yang

Based on the thermohydraulic calculation model verified in this study and Non-dominated Sorted Genetic Algorithm-II (NSGA-II), a multi-objective configuration optimization method is proposed, and the performances of shell-and-tube heat exchanger with disc-and-doughnut baffles (STHX-DDB) and shell-and-tube heat exchanger with segmental baffles (STHX-SB) are compared after optimization. The results show that, except in the high range of heat transfer capacity of 16.5–17 kW, the thermohydraulic performance of STHX-DDB is better. Tube bundle diameter, inside tube bundle diameter, number of baffles of STHX-DDB and tube bundle diameter, baffle cut, number of baffles of STHX-SB are chosen as design parameters, and heat transfer capacity maximization and shell-side pressure drop minimization are considered as common optimization objectives. Three optimal configurations are obtained for STHX-DDB and another three are obtained for STHX-SB. The optimal results show that all the six selected optimal configurations are better than the original configurations. For STHX-DDB and STHX-SB, compared with the original configurations, the heat transfer capacity of optimal configurations increases by 6.26% on average and 5.16%, respectively, while the shell-side pressure drop decreases by 44.33% and 19.16% on average, respectively. It indicates that the optimization method is valid and feasible and can provide a significant reference for shell-and-tube heat exchanger design.


2007 ◽  
Vol 129 (10) ◽  
pp. 1425-1431 ◽  
Author(s):  
B. Peng ◽  
Q. W. Wang ◽  
C. Zhang ◽  
G. N. Xie ◽  
L. Q. Luo ◽  
...  

Two shell-and-tube heat exchangers (STHXs) using continuous helical baffles instead of segmental baffles used in conventional STHXs were proposed, designed, and tested in this study. The two proposed STHXs have the same tube bundle but different shell configurations. The flow pattern in the shell side of the heat exchanger with continuous helical baffles was forced to be rotational and helical due to the geometry of the continuous helical baffles, which results in a significant increase in heat transfer coefficient per unit pressure drop in the heat exchanger. Properly designed continuous helical baffles can reduce fouling in the shell side and prevent the flow-induced vibration as well. The performance of the proposed STHXs was studied experimentally in this work. The heat transfer coefficient and pressure drop in the new STHXs were compared with those in the STHX with segmental baffles. The results indicate that the use of continuous helical baffles results in nearly 10% increase in heat transfer coefficient compared with that of conventional segmental baffles for the same shell-side pressure drop. Based on the experimental data, the nondimensional correlations for heat transfer coefficient and pressure drop were developed for the proposed continuous helical baffle heat exchangers with different shell configurations, which might be useful for industrial applications and further study of continuous helical baffle heat exchangers. This paper also presents a simple and feasible method to fabricate continuous helical baffles used for STHXs.


1961 ◽  
Vol 83 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Frederick L. Test

This paper discusses the effect of tube bundle to shell clearance, mean oil temperature, mean water temperature, and oil flow rate on the shell-side heat-transfer film coefficients and pressure losses for laminar flow in unbaffled and cross-baffled heat exchangers. The results for cross-baffled heat exchangers can be correlated by considering the flow to be a combination of flows parallel to the tubes and across the tubes.


Sign in / Sign up

Export Citation Format

Share Document