Skin Friction Measurements of Transition in High Reynolds Number, Adverse Pressure Gradient Flow

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Brian M. Holley ◽  
Larry W. Hardin ◽  
Gregory Tillman ◽  
Ray-Sing Lin ◽  
Jongwook Joo

Abstract A combined experimental and analytical modeling effort has been carried out to measure the skin friction response of the boundary layer in high Reynolds number adverse pressure gradient flow. The experiment was conducted in the United Technologies Research Center (UTRC) Acoustic Research Tunnel, an ultra-low freestream turbulence facility capable of laminar boundary layer research. Boundary layer computational fluid dynamics and stability modeling were used to provide pre-test predictions, as well as to aid in interpretation of measured results. Measurements were carried out at chord Reynolds numbers 2–3 × 106, with the model set at multiple incidence angles to establish a range of relevant leading edge pressure gradients. The combination of pressure gradient and flight Reynolds number testing on a thin airfoil has produced a unique data set relevant to propulsion system turbomachinery.

Author(s):  
Brian M. Holley ◽  
Larry W. Hardin ◽  
Gregory Tillman ◽  
Ray-Sing Lin ◽  
Jongwook Joo

A combined experimental and analytical modeling effort has been carried out to measure the skin friction response of the boundary layer in high Reynolds number adverse pressure gradient flow. The experiment was conducted in the United Technologies Research Center (UTRC) Acoustic Research Tunnel, an ultra-low freestream turbulence facility capable of laminar boundary layer research. Boundary layer computational fluid dynamics and stability modeling were used to provide pre-test predictions, as well as to aid in interpretation of measured results. Measurements were carried out at chord Reynolds numbers 2–3 × 106, with the model set at multiple incidence angles to establish a range of relevant leading edge pressure gradients. The combination of pressure gradient and flight Reynolds number testing on a thin airfoil has produced a unique data set relevant to propulsion system turbomachinery.


2014 ◽  
Vol 743 ◽  
pp. 202-248 ◽  
Author(s):  
Sébastien Deck ◽  
Nicolas Renard ◽  
Romain Laraufie ◽  
Pierre-Élie Weiss

AbstractA numerical investigation of the mean wall shear stress properties on a spatially developing turbulent boundary layer over a smooth flat plate was carried out by means of a zonal detached eddy simulation (ZDES) technique for the Reynolds number range $3060\leq Re_{\theta }\leq 13\, 650$. Some asymptotic trends of global parameters are suggested. Consistently with previous findings, the calculation confirms the occurrence of very large-scale motions approximately $5\delta $ to $6 \delta $ long which are meandering with a lateral amplitude of $0.3 \delta $ and which maintain a footprint in the near-wall region. It is shown that these large scales carry a significant amount of Reynolds shear stress and their influence on the skin friction, denoted $C_{f,2}$, is revisited through the FIK identity by Fukagata, Iwamoto & Kasagi (Phys. Fluids, vol. 14, 2002, p. L73). It is argued that $C_{f,2}$ is the relevant parameter to characterize the high-Reynolds-number turbulent skin friction since the term describing the spatial heterogeneity of the boundary layer also characterizes the total shear stress variations across the boundary layer. The behaviour of the latter term seems to follow some remarkable self-similarity trends towards high Reynolds numbers. A spectral analysis of the weighted Reynolds stress with respect to the distance to the wall and to the wavelength is provided for the first time to our knowledge and allows us to analyse the influence of the largest scales on the skin friction. It is shown that structures with a streamwise wavelength $\lambda _x >\delta $ contribute to more than $60\, \%$ of $C_{f,2}$, and that those larger than $\lambda _x >2\delta $ still represent approximately $45\, \%$ of $C_{f,2}$.


Author(s):  
Robert F. Kunz ◽  
Steven Deutsch ◽  
Jules W. Lindau

An unstructured 3D multiphase CFD method has been adapted and applied for the modeling of high Reynolds number external flows with microbubble drag reduction (MDR). An ensemble averaged multi-field two-fluid baseline differential model is employed. Interfacial dynamics models are incorporated to account for drag, lift, virtual mass and dispersion. Wall kinematic constraints, porous-wall shear apportionment, coalescence, breakup and attendant turbulence attenuation are also accounted for. The results of several high Reynolds number applications are presented, including quasi-1D analysis of an equilibrium bubbly boundary layer, 2D analysis of flat plate flow across a range of gas injection flow rates, and 3D analysis of a notional high lift hydrofoil with MDR. For the flat plate analyses, quantitative comparisons are made with available experimental skin friction measurements, and qualitative comparisons are made with available volume fraction profile measurements. Though some accuracy shortcomings remain, the generally good agreement observed serves to validate the appropriateness of two-fluid modeling in these flows, while elucidating areas where modeling improvements can be made. It is observed that the extraction of turbulent kinetic energy from the liquid phase by the action of bubble breakup can be a significant source of skin friction reduction. Also, the role of mixture density in the boundary layer on wall shear stress is discussed in the context of the homogenous mixture and two-fluid simulations presented.


Author(s):  
Ólafur H. Björnsson ◽  
Sikke A. Klein ◽  
Joeri Tober

Abstract The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter [1] for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4–5x. By simplifying the Lewis number dependent flame speed computation and by applying a generalized version of Stratford’s flow separation criterion [2], the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2° and 4° diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


Author(s):  
Yasaman Farsiani ◽  
Brian R. Elbing

This paper reports on the characterization of the custom-designed high-Reynolds number recirculating water tunnel located at Oklahoma State University. The characterization includes the verification of the test section design, pump calibration and the velocity distribution within the test section. This includes an assessment of the boundary layer growth within the test section. The tunnel was designed to achieve a downstream distance based Reynolds number of 10 million, provide optical access for flow visualization and minimize inlet flow non-uniformity. The test section is 1 m long with 15.2 cm (6-inch) square cross section and acrylic walls to allow direct line of sight at the tunnel walls. The verification of the test section design was accomplished by comparing the flow quality at different location downstream of the flow inlet. The pump was calibrated with the freestream velocity with three pump frequencies and velocity profiles were measured at defined locations for three pump speeds. Boundary layer thicknesses were measured from velocity profile results and compared with analytical calculations. These measurements were also compared against the facility design calculations.


Sign in / Sign up

Export Citation Format

Share Document