scholarly journals Generalization of Machine-Learned Turbulent Heat Flux Models Applied to Film Cooling Flows

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Pedro M. Milani ◽  
Julia Ling ◽  
John K. Eaton

Abstract The design of film cooling systems relies heavily on Reynolds-averaged Navier–Stokes (RANS) simulations, which solve for mean quantities and model all turbulent scales. Most turbulent heat flux models, which are based on isotropic diffusion with a fixed turbulent Prandtl number (Prt), fail to accurately predict heat transfer in film cooling flows. In the present work, machine learning models are trained to predict a non-uniform Prt field using various datasets as training sets. The ability of these models to generalize beyond the flows on which they were trained is explored. Furthermore, visualization techniques are employed to compare distinct datasets and to help explain the cross-validation results.

Author(s):  
Pedro M. Milani ◽  
Julia Ling ◽  
John K. Eaton

Abstract The design of film cooling systems relies heavily on Reynolds-Averaged Navier-Stokes (RANS) simulations, which solve for mean quantities and model all turbulent scales. Most turbulent heat flux models, which are based on isotropic diffusion with a fixed turbulent Prandtl number (Prt), fail to accurately predict heat transfer in film cooling flows. In the present work, machine learning models are trained to predict a non-uniform Prt field, using various datasets as training sets. The ability of these models to generalize beyond the flows on which they were trained is explored. Furthermore, visualization techniques are employed to compare distinct datasets and to help explain the cross-validation results.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Pedro M. Milani ◽  
Julia Ling ◽  
Gonzalo Saez-Mischlich ◽  
Julien Bodart ◽  
John K. Eaton

In film cooling flows, it is important to know the temperature distribution resulting from the interaction between a hot main flow and a cooler jet. However, current Reynolds-averaged Navier–Stokes (RANS) models yield poor temperature predictions. A novel approach for RANS modeling of the turbulent heat flux is proposed, in which the simple gradient diffusion hypothesis (GDH) is assumed and a machine learning (ML) algorithm is used to infer an improved turbulent diffusivity field. This approach is implemented using three distinct data sets: two are used to train the model and the third is used for validation. The results show that the proposed method produces significant improvement compared to the common RANS closure, especially in the prediction of film cooling effectiveness.


Author(s):  
Pedro M. Milani ◽  
Julia Ling ◽  
Gonzalo Saez-Mischlich ◽  
Julien Bodart ◽  
John K. Eaton

In film cooling flows, it is important to know the temperature distribution resulting from the interaction between a hot main flow and a cooler jet. However, current Reynolds-averaged Navier-Stokes (RANS) models yield poor temperature predictions. A novel approach for RANS modeling of the turbulent heat flux is proposed, in which the simple gradient diffusion hypothesis (GDH) is assumed and a machine learning algorithm is used to infer an improved turbulent diffusivity field. This approach is implemented using three distinct data sets: two are used to train the model and the third is used for validation. The results show that the proposed method produces significant improvement compared to the common RANS closure, especially in the prediction of film cooling effectiveness.


Author(s):  
Fabíola Paula Costa ◽  
Rubén Bruno Díaz ◽  
Pedro M. Milani ◽  
Jesuíno Takachi Tomita ◽  
Cleverson Bringhenti

Abstract Film cooling is an important technique to ensure safe operation and performance fulfillment of turbines. Its ultimate goal is to protect the axial turbine blades from high gas temperatures. An appropriate study is necessary in order to obtain a reliable representation of the flow characteristics involved in such phenomena. Because of the high computational cost of high-fidelity simulations, the low-fidelity simulation method Reynolds Averaged Navier Stokes (RANS) is commonly used in practical configurations. However, the majority of the current turbulent heat flux models fail to accurately predict heat transfer in film cooling flows. Recent work suggests the use of machine learning models to improve turbulent closure in these flows. In the present work, a machine learning model for spatially varying turbulent Prandtl number previously described in the literature is applied to a transverse film cooling flow consisting of a jet square channel. The results obtained in the present work were compared to adiabatic effectiveness experimental data available in the literature to assess the performance of the machine learning model. The results shown that for low blowing ratios (BR = 0.2 and BR = 0.4) the proposed machine learning model has poor performance. However, for the case with the highest blowing ratio (BR = 0.8), the proposed model presented better results. These results are then explained in terms of the resulting turbulent Prandtl number field and suggest that the training set is not appropriate for capturing the turbulent heat flux in fully attached jets in crossflow.


Author(s):  
Christopher D. Ellis ◽  
Hao Xia ◽  
Gary J. Page

Abstract A novel data-driven approach is used to describe a spatially varying turbulent diffusivity coefficient for the Higher Order Generalised Gradient Diffusion Hypothesis (HOGGDH) closure of the turbulent heat flux to improve upon RANS cooling predictions in film cooling flows. Machine learning algorithms are trained on two film cooling flows and tested on a case of a different density and blowing ratio. The Random Forests and Neural Network algorithms successfully reproduced the LES described coefficient and the magnitude of the turbulent heat flux vector. The Random Forests model was implemented in a steady RANS solver with a k-ω SST turbulence model and applied to four cases. All cases saw improvements in the predicted Adiabatic Cooling Effectiveness (ACE) over the cooled surface compared to the standard Gradient Diffusion Hypothesis (GDH) approach, but only minor improvements in the centreline and lateral spread are seen compared to a HOGGDH model with a constant cθ of 0.6. Further improvements to cooling predictions are highlighted by extending these data-driven approaches into turbulence modelling to improve flow field predictions.


Author(s):  
Michael Straußwald ◽  
Karin Schmid ◽  
Hagen Müller ◽  
Michael Pfitzner

Fundamental knowledge on the flow dynamics and in particular the turbulent heat flux in film cooling flows is essential for the future design process of efficient cooling geometries. Thermographic PIV has been used to measure temperature and velocity fields in flows emanating from cylindrical effusion holes simultaneously. The measurements were carried out in a closed-loop, heated wind tunnel facility at a repetition rate of 6 kHz. Due to the high frame rate of the measurements, the unsteady flow dynamics could be resolved. For a density ratio of DR = 1.6 and a momentum ratio of I = 8, the jet ejected from the cylindrical effusion hole lifts off the surface. From the instantaneous measurements it could be observed that pockets of hot air are entrained into the coolant forcing the relatively fast cooling air to dodge the slow main flow air. These shear layer fluctuations result in turbulent heat fluxes that do not follow the gradient diffusion hypothesis which is often used in RANS models. In addition to these experimental investigations, numerical results from RANS simulations with the k-ω-SST turbulence model are presented that were carried out as basis for future investigations on turbulent heat flux modeling.


1981 ◽  
Vol 103 (1) ◽  
pp. 153-158 ◽  
Author(s):  
H. W. Coleman ◽  
R. J. Moffat ◽  
W. M. Kays

Heat transfer behavior of a fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Stanton numbers and profiles of mean temperature, turbulent Prandtl number, and turbulent heat flux are reported. Three equilibrium acceleration cases (one with blowing) and one non-equilibrium acceleration case were studied. For each acceleration case of this study, Stanton number increased over zero pressure gradient values at the same position or enthalpy thickness. Turbulent Prandtl number was found to be approximately constant at 0.7–0.8 across the layer, and profiles of the non-dimensional turbulent heat flux showed close agreement with those previously reported for both smooth and rough wall zero pressure gradient layers.


Author(s):  
Pedro M. Milani ◽  
Julia Ling ◽  
John K. Eaton

Current turbulent heat flux models fail to predict accurate temperature distributions in film cooling flows. The present paper focuses on a machine learning approach to this problem, in which the Gradient Diffusion Hypothesis (GDH) is used in conjunction with a data-driven prediction for the turbulent diffusivity field αt. An overview of the model is presented, followed by validation against two film cooling datasets. Despite insufficiencies, the model shows some improvement in the near-injection region. The present work also attempts to interpret the complex machine learning decision process, by analyzing the model features and determining their importance. These results show that the model is heavily reliant of distance to the wall d and eddy viscosity vt, while other features display localized prominence.


Sign in / Sign up

Export Citation Format

Share Document