accurate temperature
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 0)

2022 ◽  
Vol 43 (3) ◽  
Author(s):  
Gavin Sutton ◽  
Sofia Korniliou ◽  
Aurik Andreu ◽  
David Wilson

AbstractAccurate temperature measurements are critical in manufacturing, affecting both product quality and energy consumption. At elevated temperatures, non-contact thermometers are often the only option. However, such instruments require prior knowledge of the surface emissivity, which is often unknown or difficult to determine, leading to large errors. Here we present a novel imaging luminescence thermometer based on the intensity ratio technique using magnesium fluorogermanate phosphor, with the potential to overcome this limitation. We describe measurements performed on a number of engineering alloys undergoing heat treatment at temperatures of up to 750 °C and compare these measurements against a traditional contact thermocouple and thermal imager system. Agreement between the luminescence and embedded thermocouple temperatures was found to be better than 45 °C at all temperatures. However, the thermal imager measurement on the bare metal samples, with the instrument emissivity set to 1.0, showed differences of up to 500 °C at 750 °C, a factor of 10 larger. In an effort to improve the thermal imager accuracy, its instrument emissivity was adjusted until its temperature agreed with that of the thermocouple. When measuring on the bare metal, the effective emissivity was strongly sample dependent, with mean values ranging from 0.205 to 0.784. Since the phosphor derived temperatures exhibited substantially smaller errors compared to the thermal imager, it is suggested that this method can be used to compliment the thermal imaging technique, by providing a robust mechanism for adjustment of the instrument emissivity until agreement between the thermal imager and phosphor thermometer is obtained.



Author(s):  
Yuting Zhang ◽  
yuan xiao hao ◽  
Wei Huang ◽  
Wentao Zhang ◽  
Jiaqi Wang

Abstract Based on the problem that the intensity of excitation source is not easy to regulate by the traditional active control method, this paper presents an accurate temperature control system based on micro-hotplate for the first time. This system realizes the active control of terahertz metamaterial functional devices, and implements various functions by using the proposed accurate temperature control process. The temperature control characteristics of micro-hotplate are introduced into the design of terahertz functional devices by taking a vanadium dioxide (VO₂ ) metamaterial absorber as an example. In this design, a silicon-based micro-hotplate is used to heat the metamaterial absorber. According to the phase transition characteristics of VO₂ , the alteration of temperature leads to conductivity change, so as to realize the active control of the absorber. At the same time, this paper also analyzes the heating and cooling time of the micro-hotplate. The simulation results show that, by using the micro-hotplate to heat the metamaterial functional devices, the temperature adjustment speed is reasonably high and the controllable performance is excellent. The test results shows that the surface temperature can be controlled between 40 ℃ and 80 ℃ , and the temperature difference of the working area can be kept within 1℃ . The temperature control of the micro-hotplate is accurately controlled, resulting in the great performance of the metamaterial functional devices.



Abstract Hyperspectral infrared satellite observations from geostationary platforms allow for the retrieval of temperature and water vapor measurements with higher temporal and vertical resolution than was previously available. The Chinese satellite, FY-4A includes the Geostationary Interferometric Infrared Sounder (GIIRS) which has the ability to measure vertical profiles of temperature and water vapor from space at times when ground-based upper air soundings are not available and can fill an important need in short-range weather prediction. In this study, CAPE and LI, which are used for forecasting atmospheric instability, were computed using the SHARPpy algorithm used by the NWS Storm Prediction Center. However, remote infrared and microwave sensing is lacking detailed information in the boundary layer, so the addition of the NOAA MADIS surface data may be necessary in order to get accurate temperature and moisture measurement near the surface. This study uses May 10-16, 2019 in the coastal region near Hong Kong for evaluating the use of hourly surface observations combined with satellite soundings from FY4A GIIRS at two hour intervals. The GIIRS plus MADIS surface-based CAPE and LI estimates are compared to estimates derived from low earth orbiting (LEO) SNPP and NOAA20 from NOAA, METOP from EUMETSAT, NWP reanalysis, and local radiosondes. In the case study, the two-hour sampling interval of the GIIRS geostationary sounder was able to capture the rapid transition (16 hours) from stable to unstable atmosphere in both CAPE and LI. The use of surface observations with satellite soundings gave mixed results, possibly due to the complex terrain near Hong Kong.





2021 ◽  
Author(s):  
Hengan Zhou ◽  
Hongna Zhu ◽  
Yufeng Zhang ◽  
Manli Huang ◽  
Guangming Li


2021 ◽  
Vol 2015 (1) ◽  
pp. 012168
Author(s):  
Ildar Yusupov ◽  
Dmitry Filonov ◽  
Pavel Ginzburg ◽  
Mikhail Rybin ◽  
Alexey Slobozhanyuk

Abstract This paper presents a wireless temperature sensor design based on the excitation of a high-Q supercavity mode in a dielectric resonator. Narrow resonance bandwidth improves sensor performance enabling accurate temperature measurements. The sensor consists of a half split ceramic cylinder attached to a metal sheet. The resonator parameters which lead to the excitation of a supercavity mode were obtained numerically. When the ambient temperature increased continuously from 23 to 120°C the notable shift of the resonant frequency was experimentally demonstrated.





Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4998
Author(s):  
Nagham Abdelrahman Alhajj Chehade ◽  
Amine Lahouar ◽  
Omar Al-Mansouri ◽  
Nicolas Pinoteau ◽  
Marco Abate ◽  
...  

Post-installed rebars (PIRs) using mortar can offer bond strength at ambient temperature equal or higher to that of cast-in place rebars. However, high temperatures have the effect of weakening the bond, typically governed by the chemical and physical properties of the mortar which is often sensitive to temperature increase. Therefore, the behavior of PIRs in a fire situation becomes vulnerable. Moreover, after exposure of PIRs to high temperature, the heat transfer continues during the post-fire phase, which might endanger the construction after a fire event. In order to evaluate the evolution of the pull-out capacity during fire, Pinoteau et al. have developed the bond resistance integration method (Pinoteau’s RIM) to predict the bond resistance value of a rebar subjected to various temperatures in accordance with the fire exposure curves. Therefore, accurate temperature profiles during the post-fire phase are needed to ensure a correct calculation of the post-fire behavior of the PIR connection. This paper presents 3D finite element thermal simulations of PIRs in concrete exposed to ISO 834-1 fire conditions then cooled with ambient air. Numerical thermal profiles are then compared to the experimental results (i.e., post-fire pull-out tests). The proposed model provides guidelines for conducting numerical simulations to determine the thermal entry data necessary for predicting thermal profiles in PIRs during heating and cooling phases. Then, the post-fire pull-out capacity of PIRs in concrete is calculated using Pinoteau’s RIM, and compared to experimental post-fire pull-out results.



2021 ◽  
Vol 9 ◽  
Author(s):  
Donna Lei ◽  
Kenneth Tan ◽  
Atul Malhotra

Introduction: Accurate temperature monitoring of neonates is vital due to the significant morbidities and mortality associated with neonatal hypothermia. Many studies have compared different thermometers in neonates, however, there is a lack of consensus regarding which of the currently available thermometers is most suitable for use in neonates.Objectives: The aim of this review was to identify and compare current methods available for temperature monitoring of neonates beyond the delivery room, including the accuracy, advantages and disadvantages of each.Methods: A recent search and narrative synthesis of relevant studies published between January 1, 1949 and May 5, 2021 on the OVID Medline, PubMed and Google Scholar databases.Results: A total of 160 papers were retrieved for narrative synthesis. The main methods available for temperature monitoring in neonates are human touch and mercury-in-glass, electronic, infrared tympanic and other infrared thermometers. Newer innovations that are also available include liquid crystal thermometers and the BEMPU TempWatch. This paper discusses the current evidence available regarding the utility of these devices, and identifies barriers to valid comparison of different thermometry methods.Conclusion: Many methods for temperature monitoring in neonates are currently available, each with their own advantages and disadvantages. However, the accuracies of different devices are hard to determine due to variable methodologies used in relevant studies and hence, further research that addresses these gaps is needed.





Sign in / Sign up

Export Citation Format

Share Document