A New Mistuning Identification Method Based on the Subset of Nominal System Modes Method

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Christian U. Waldherr ◽  
Patrick Buchwald ◽  
Damian M. Vogt

Abstract The mistuning problem of quasi-periodic structures has been the subject of numerous scientific investigations for more than 50 years. Researchers developed reduced-order models to reduce the computational costs of mistuning investigations including finite element models. One question which has also high practical relevance is the identification of mistuning based on modal properties. In this work, a new identification method based on the subset of nominal system modes method (SNM) is presented. Different to existing identification methods where usually the blade stiffness of each sector is scaled by a scalar value, N identification parameters are used to adapt the modal blade stiffness of each sector. The input data for the identification procedure consist solely of the mistuned natural frequencies of the investigated mode family as well as of the corresponding mistuned mode shapes in the form of one degree-of-freedom per sector. The reduction basis consists of the tuned mode shapes of the investigated mode family. Furthermore, the proposed identification method allows for the inclusion of centrifugal effects like stress stiffening and spin softening without additional computational effort. From this point of view, the presented method is also appropriate to handle centrifugal effects in reduced-order models using a minimum set of input data compared to existing methods. The power of the new identification method is demonstrated on the example of an axial compressor blisk. Finite element calculations including geometrical mistuning provide the database for the identification procedure. The correct functioning of the identification method including measurement noise is also validated to show the applicability to a case of application where real measurement data are available.

Author(s):  
Christian U. Waldherr ◽  
Patrick Buchwald ◽  
Damian M. Vogt

Abstract The mistuning problem of quasi periodic structures is subject of numerous scientific investigations for more than 50 years. Researchers developed reduced order models to reduce the computational costs of mistuning investigations including finite element models. One question which has also high practical relevance is the identification of mistuning based on modal properties. In the present work, a new identification method based on the Subset of Nominal System Modes method (SNM) is presented. The input data for the identification procedure consists solely of the mistuned natural frequencies of the investigated mode family as well as of the corresponding mistuned mode shapes in the form of one degree of freedom per sector. The reduction basis consists of the tuned mode shapes of the investigated mode family. Furthermore, the proposed identification method allows for the inclusion of centrifugal effects like stress stiffening and spin softening without additional computational effort. From this point of view the presented method is also appropriate to handle centrifugal effects in reduced order models using a minimum set of input data compared to existing methods. The powerfulness of the new identification method is demonstrated on the example of an axial compressor blisk. Finite element calculations including geometrical mistuning provide the data base for the identification procedure. The correct functioning of the identification method including measurement noise is also validated to show the applicability to a case of application where real measurement data is available.


2002 ◽  
Vol 124 (4) ◽  
pp. 942-952 ◽  
Author(s):  
F. Moyroud ◽  
T. Fransson ◽  
G. Jacquet-Richardet

The high performance bladed disks used in today’s turbomachines must meet strict standards in terms of aeroelastic stability and resonant response level. One structural characteristic that can significantly impact on both these areas is that of bladed disk mistuning. To predict the effects of mistuning, computational efficient methods are much needed to make free-vibration and forced-response analyses of full assembly finite element (FE) models feasible in both research and industrial environments. Due to the size and complexity of typical industrial bladed disk models, one must resort to robust and systematic reduction techniques to produce reduced-order models of sufficient accuracy. The objective of this paper is to compare two prevalent reduction methods on representative test rotors, including a modern design industrial shrouded bladed disk, in terms of accuracy (for frequencies and mode shapes), reduction order, computational efficiency, sensitivity to intersector elastic coupling, and ability to capture the phenomenon of mode localization. The first reduction technique employs a modal reduction approach with a modal basis consisting of mode shapes of the tuned bladed disk which can be obtained from a classical cyclic symmetric modal analysis. The second reduction technique uses Craig and Bampton substructure modes. The results show a perfect agreement between the two reduced-order models and the nonreduced finite element model. It is found that the phenomena of mode localization is equally well predicted by the two reduction models. In terms of computational cost, reductions from one to two orders of magnitude are obtained for the industrial bladed disk, with the modal reduction method being the most computationally efficient approach.


2019 ◽  
Vol 86 (8) ◽  
Author(s):  
Philipp Bättig ◽  
Jürg Schiffmann

The measurement results of various nitrile butadiene rubber (NBR) O-Ring sizes are presented, and reduced-order models are developed in order to predict the stiffness and damping coefficient as a function of O-Ring geometry, Shore hardness, squeeze, and excitation frequency. The results show that the curvature ratio d/D needs to be considered in the reduced-order models. The assessment of the model suggests a maximum deviation of 30% in predicted stiffness compared to the measurement data. However, taking into account the typical Shore hardness tolerance given by O-Ring manufacturers and other measurement uncertainties, the proposed model enables the prediction of various O-Rings with a good accuracy in the frequency range of 1.5–3.75 kHz, which corresponds to typical gas bearing supported rotor applications.


Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced order models in which the modes of the mistuned system are represented in terms of a sub-set of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees of freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


2013 ◽  
Vol 136 (7) ◽  
Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

The results from a reduced order model based on frequency mistuning are compared with those from recently developed modified modal domain analysis (MMDA). For the academic bladed rotor considered in this paper, the frequency mistuning analysis is unable to capture the effects of geometric mistuning, whereas MMDA provides accurate estimates of natural frequencies, mode shapes, and forced response.


2003 ◽  
Vol 125 (3) ◽  
pp. 772-776 ◽  
Author(s):  
P. Marugabandhu ◽  
J. H. Griffin

A reduced-order model has been developed that can be used to accurately and quickly calculate the changes in the natural frequencies and mode shapes of a blade that are caused by centrifugal stiffening. It has been corroborated by comparisons with finite element analyses of a cantilevered tapered plate and with frequencies from a low aspect ratio fan blade.


Author(s):  
Elise Delhez ◽  
Florence Nyssen ◽  
Jean-Claude Golinval ◽  
Alain Batailly

Abstract This paper investigates the use of different model reduction methods accounting for geometric nonlinearities. These methods are adapted to retain physical degrees-of-freedom in the reduced space in order to ease contact treatment. These reduction methods are applied to a 3D finite element model of an industrial compressor blade (NASA rotor 37). In order to compare the different reduction methods, a scalar indicator is defined. This performance indicator allows to quantify the accuracy of the predicted displacement both locally (at the blade tip) and globally. The robustness of each method with respect to variations of the external excitation is also assessed. The performances of the reduction methods are then compared in the case of frictional contact between the blade tip and the surrounding casing. This work brings evidence that reduced order models provide a computationally efficient alternative to full order finite element models for the accurate prediction of the time response of structures with both distributed and localized nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document