Data-Driven Concept Network for Inspiring Designers’ Idea Generation

Author(s):  
Qiyu Liu ◽  
Kai Wang ◽  
Yan Li ◽  
Ying Liu

Abstract Big-data mining brings new challenges and opportunities for engineering design, such as customer-needs mining, sentiment analysis, knowledge discovery, etc. At the early phase of conceptual design, designers urgently need to synthesize their own internal knowledge and wide external knowledge to solve design problems. However, on the one hand, it is time-consuming and laborious for designers to manually browse massive volumes of web documents and scientific literature to acquire external knowledge. On the other hand, how to extract concepts and discover meaningful concept associations automatically and accurately from these textual data to inspire designers’ idea generation? To address the above problems, we propose a novel data-driven concept network based on machine learning to capture design concepts and meaningful concept combinations as useful knowledge by mining the web documents and literature, which is further exploited to inspire designers to generate creative ideas. Moreover, the proposed approach contains three key steps: concept vector representation based on machine learning, semantic distance quantification based on concept clustering, and possible concept combinations based on natural language processing technologies, which is expected to provide designers with inspirational stimuli to solve design problems. A demonstration of conceptual design for detecting the fault location in transmission lines has been taken to validate the practicability and effectiveness of this approach.

Author(s):  
Ekaterina Kochmar ◽  
Dung Do Vu ◽  
Robert Belfer ◽  
Varun Gupta ◽  
Iulian Vlad Serban ◽  
...  

AbstractIntelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.


Author(s):  
Shishir K. Shandilya ◽  
Suresh Jain

The explosive increase in Internet usage has attracted technologies for automatically mining the user-generated contents (UGC) from Web documents. These UGC-rich resources have raised new opportunities and challenges to carry out the opinion extraction and mining tasks for opinion summaries. The technology of opinion extraction allows users to retrieve and analyze people’s opinions scattered over Web documents. Opinion mining is a process which is concerned with the opinions generated by the consumers about the product. Opinion Mining aims at understanding, extraction and classification of opinions scattered in unstructured text of online resources. The search engines performs well when one wants to know about any product before purchase, but the filtering and analysis of search results often complex and time-consuming. This generated the need of intelligent technologies which could process these unstructured online text documents through automatic classification, concept recognition, text summarization, etc. These tools are based on traditional natural language techniques, statistical analysis, and machine learning techniques. Automatic knowledge extraction over large text collections like Internet has been a challenging task due to many constraints such as needs of large annotated training data, requirement of extensive manual processing of data, and huge amount of domain-specific terms. Ambient Intelligence (AmI) in wed-enabled technologies supports and promotes the intelligent e-commerce services to enable the provision of personalized, self-configurable, and intuitive applications for facilitating UGC knowledge for buying confidence. In this chapter, we will discuss various approaches of Opinion Mining which combines Ambient Intelligence, Natural Language Processing and Machine Learning methods based on textual and grammatical clues.


JAMIA Open ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuchiang R Tsui ◽  
Lingyun Shi ◽  
Victor Ruiz ◽  
Neal D Ryan ◽  
Candice Biernesser ◽  
...  

Abstract Objective Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natural language processing (NLP) and machine learning (ML) to unstructured (narrative) clinical notes and structured electronic health record (EHR) data. Methods This case-control study included patients aged 10–75 years who were seen between 2007 and 2016 from emergency departments and inpatient units. Cases were first-time suicide attempts from coded diagnosis; controls were randomly selected without suicide attempts regardless of demographics, following a ratio of nine controls per case. Four data-driven ML models were evaluated using 2-year historical EHR data prior to suicide attempt or control index visits, with prediction windows from 7 to 730 days. Patients without any historical notes were excluded. Model evaluation on accuracy and robustness was performed on a blind dataset (30% cohort). Results The study cohort included 45 238 patients (5099 cases, 40 139 controls) comprising 54 651 variables from 5.7 million structured records and 798 665 notes. Using both unstructured and structured data resulted in significantly greater accuracy compared to structured data alone (area-under-the-curve [AUC]: 0.932 vs. 0.901 P < .001). The best-predicting model utilized 1726 variables with AUC = 0.932 (95% CI, 0.922–0.941). The model was robust across multiple prediction windows and subgroups by demographics, points of historical most recent clinical contact, and depression diagnosis history. Conclusions Our large data-driven approach using both structured and unstructured EHR data demonstrated accurate and robust first-time suicide attempt prediction, and has the potential to be deployed across various populations and clinical settings.


2021 ◽  
Author(s):  
Saniya Karnik ◽  
Navya Yenuganti ◽  
Bonang Firmansyah Jusri ◽  
Supriya Gupta ◽  
Prasanna Nirgudkar ◽  
...  

Abstract Today, the Dismantle, Inspection, and Failure Analysis (DIFA) process for electrical submersible pump (ESP) failure analysis is a tedious, human-intensive, and time-consuming activity. The activity involves a set of data and various information formats from several activities in the ESP operation lifecycle. This paper proposes a novel artificial intelligence workflow to improve the efficiency of the DIFA process using an ensemble of machine learning (ML) algorithms. This ensemble of algorithms brings together structured/unstructured data across equipment, production, operations, and failure reports to automate root-cause identification and analysis post breakdown. As a result, the time and human effort required in the process has been reduced, and process efficiency has drastically improved.


2021 ◽  
Author(s):  
Hongbao Zhang ◽  
Yijin Zeng ◽  
Lulu Liao ◽  
Ruiyao Wang ◽  
Xutian Hou ◽  
...  

Abstract Digitalization and intelligence are attracting increasing attention in petroleum engineering. Amounts of published research indicates modern data science has been applied in almost every corner of petroleum engineering where data generates, however, mature products are few or the performance are not up to peoples’ expectations. Despite the great success in other industries (internet, transportation, and finance, etc.), the "amazing" data science algorithms seem to be challenged when "landing" in petroleum engineering. It is time to calmly analyze current situations and discuss the methodology to apply modern data science in petroleum engineering, for safety ensuring, efficiency improvement and cost saving. Based on the experiences of several data products in petroleum engineering and wide investigation of literatures, the methodology is summarized by answering some important questions: what is the difference between petroleum engineering and other industries and what are the greatest challenges for algorithms "landing"? how could we build a data product development team? why the machine learning models didn't work well in real world, which are derived by typical procedures in textbooks? are current artificial intelligent algorithms perfect and is there any limit? how could we deal with the relationship between prior knowledge and data-driven methods? what is the key point to keep data product competitive? Several specific scenarios are introduced as examples, such as ROP modelling, drilling parameters optimization, text mining of drilling reports and well production prediction, etc. where deep learning, traditional machine learning, incremental learning and natural language processing methods, etc. are used. Besides detailed discussions in the paper, conclusions are summarized as: 1) the strengths and weakness of current artificial intelligence should be viewed objectively, practical suggestions to make up the weakness are provided; 2) the combination of prior knowledge (from lab tests or expert experiences) and data-driven methods are always necessary and methods for the combination are summarized; 3) data volume and solution portability are the key points to improve data product competitiveness; 4) suggestions on how to build a multi-disciplinary R&D team and how to plan a product are provided. This paper conducts an objective analysis on challenges for modern data science applying in petroleum engineering and provides a clear methodology and specific suggestions on how to improve the success rate of R&D projects which apply data science to solve problems in petroleum engineering.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hiromi Yasuda ◽  
Koshiro Yamaguchi ◽  
Yasuhiro Miyazawa ◽  
Richard Wiebe ◽  
Jordan R. Raney ◽  
...  

Abstract Advances in machine learning have revolutionized capabilities in applications ranging from natural language processing to marketing to health care. Recently, machine learning techniques have also been employed to learn physics, but one of the formidable challenges is to predict complex dynamics, particularly chaos. Here, we demonstrate the efficacy of quasi-recurrent neural networks in predicting extremely chaotic behavior in multistable origami structures. While machine learning is often viewed as a “black box”, we conduct hidden layer analysis to understand how the neural network can process not only periodic, but also chaotic data in an accurate manner. Our approach shows its effectiveness in characterizing and predicting chaotic dynamics in a noisy environment of vibrations without relying on a mathematical model of origami systems. Therefore, our method is fully data-driven and has the potential to be used for complex scenarios, such as the nonlinear dynamics of thin-walled structures and biological membrane systems.


2020 ◽  
pp. 3-17
Author(s):  
Peter Nabende

Natural Language Processing for under-resourced languages is now a mainstream research area. However, there are limited studies on Natural Language Processing applications for many indigenous East African languages. As a contribution to covering the current gap of knowledge, this paper focuses on evaluating the application of well-established machine translation methods for one heavily under-resourced indigenous East African language called Lumasaaba. Specifically, we review the most common machine translation methods in the context of Lumasaaba including both rule-based and data-driven methods. Then we apply a state of the art data-driven machine translation method to learn models for automating translation between Lumasaaba and English using a very limited data set of parallel sentences. Automatic evaluation results show that a transformer-based Neural Machine Translation model architecture leads to consistently better BLEU scores than the recurrent neural network-based models. Moreover, the automatically generated translations can be comprehended to a reasonable extent and are usually associated with the source language input.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document