A Review and evaluation of Machine Translation methods for Lumasaaba

2020 ◽  
pp. 3-17
Author(s):  
Peter Nabende

Natural Language Processing for under-resourced languages is now a mainstream research area. However, there are limited studies on Natural Language Processing applications for many indigenous East African languages. As a contribution to covering the current gap of knowledge, this paper focuses on evaluating the application of well-established machine translation methods for one heavily under-resourced indigenous East African language called Lumasaaba. Specifically, we review the most common machine translation methods in the context of Lumasaaba including both rule-based and data-driven methods. Then we apply a state of the art data-driven machine translation method to learn models for automating translation between Lumasaaba and English using a very limited data set of parallel sentences. Automatic evaluation results show that a transformer-based Neural Machine Translation model architecture leads to consistently better BLEU scores than the recurrent neural network-based models. Moreover, the automatically generated translations can be comprehended to a reasonable extent and are usually associated with the source language input.

2013 ◽  
Vol 347-350 ◽  
pp. 3262-3266
Author(s):  
Ai Ling Wang

Machine translation (MT) is one of the core application of natural language processing and an important branch of artificial intelligence research; statistical methods have already become the mainstream of machine translation. This paper explores the comparative analysis on the translation model of statistical natural language processing based on the large-scale corpus; discusses word-based, phrase-based and syntax-based machine translation methods respectively, summarizes the evaluation factors of machine translation and analyzes evaluation methods of machine translation.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2021 ◽  
Author(s):  
Monique B. Sager ◽  
Aditya M. Kashyap ◽  
Mila Tamminga ◽  
Sadhana Ravoori ◽  
Christopher Callison-Burch ◽  
...  

BACKGROUND Reddit, the fifth most popular website in the United States, boasts a large and engaged user base on its dermatology forums where users crowdsource free medical opinions. Unfortunately, much of the advice provided is unvalidated and could lead to inappropriate care. Initial testing has shown that artificially intelligent bots can detect misinformation on Reddit forums and may be able to produce responses to posts containing misinformation. OBJECTIVE To analyze the ability of bots to find and respond to health misinformation on Reddit’s dermatology forums in a controlled test environment. METHODS Using natural language processing techniques, we trained bots to target misinformation using relevant keywords and to post pre-fabricated responses. By evaluating different model architectures across a held-out test set, we compared performances. RESULTS Our models yielded data test accuracies ranging from 95%-100%, with a BERT fine-tuned model resulting in the highest level of test accuracy. Bots were then able to post corrective pre-fabricated responses to misinformation. CONCLUSIONS Using a limited data set, bots had near-perfect ability to detect these examples of health misinformation within Reddit dermatology forums. Given that these bots can then post pre-fabricated responses, this technique may allow for interception of misinformation. Providing correct information, even instantly, however, does not mean users will be receptive or find such interventions persuasive. Further work should investigate this strategy’s effectiveness to inform future deployment of bots as a technique in combating health misinformation. CLINICALTRIAL N/A


JAMIA Open ◽  
2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Craig H Ganoe ◽  
Weiyi Wu ◽  
Paul J Barr ◽  
William Haslett ◽  
Michelle D Dannenberg ◽  
...  

Abstract Objectives The objective of this study is to build and evaluate a natural language processing approach to identify medication mentions in primary care visit conversations between patients and physicians. Materials and Methods Eight clinicians contributed to a data set of 85 clinic visit transcripts, and 10 transcripts were randomly selected from this data set as a development set. Our approach utilizes Apache cTAKES and Unified Medical Language System controlled vocabulary to generate a list of medication candidates in the transcribed text and then performs multiple customized filters to exclude common false positives from this list while including some additional common mentions of the supplements and immunizations. Results Sixty-five transcripts with 1121 medication mentions were randomly selected as an evaluation set. Our proposed method achieved an F-score of 85.0% for identifying the medication mentions in the test set, significantly outperforming existing medication information extraction systems for medical records with F-scores ranging from 42.9% to 68.9% on the same test set. Discussion Our medication information extraction approach for primary care visit conversations showed promising results, extracting about 27% more medication mentions from our evaluation set while eliminating many false positives in comparison to existing baseline systems. We made our approach publicly available on the web as an open-source software. Conclusion Integration of our annotation system with clinical recording applications has the potential to improve patients’ understanding and recall of key information from their clinic visits, and, in turn, to positively impact health outcomes.


10.2196/27386 ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. e27386
Author(s):  
Qingyu Chen ◽  
Alex Rankine ◽  
Yifan Peng ◽  
Elaheh Aghaarabi ◽  
Zhiyong Lu

Background Semantic textual similarity (STS) measures the degree of relatedness between sentence pairs. The Open Health Natural Language Processing (OHNLP) Consortium released an expertly annotated STS data set and called for the National Natural Language Processing Clinical Challenges. This work describes our entry, an ensemble model that leverages a range of deep learning (DL) models. Our team from the National Library of Medicine obtained a Pearson correlation of 0.8967 in an official test set during 2019 National Natural Language Processing Clinical Challenges/Open Health Natural Language Processing shared task and achieved a second rank. Objective Although our models strongly correlate with manual annotations, annotator-level correlation was only moderate (weighted Cohen κ=0.60). We are cautious of the potential use of DL models in production systems and argue that it is more critical to evaluate the models in-depth, especially those with extremely high correlations. In this study, we benchmark the effectiveness and efficiency of top-ranked DL models. We quantify their robustness and inference times to validate their usefulness in real-time applications. Methods We benchmarked five DL models, which are the top-ranked systems for STS tasks: Convolutional Neural Network, BioSentVec, BioBERT, BlueBERT, and ClinicalBERT. We evaluated a random forest model as an additional baseline. For each model, we repeated the experiment 10 times, using the official training and testing sets. We reported 95% CI of the Wilcoxon rank-sum test on the average Pearson correlation (official evaluation metric) and running time. We further evaluated Spearman correlation, R², and mean squared error as additional measures. Results Using only the official training set, all models obtained highly effective results. BioSentVec and BioBERT achieved the highest average Pearson correlations (0.8497 and 0.8481, respectively). BioSentVec also had the highest results in 3 of 4 effectiveness measures, followed by BioBERT. However, their robustness to sentence pairs of different similarity levels varies significantly. A particular observation is that BERT models made the most errors (a mean squared error of over 2.5) on highly similar sentence pairs. They cannot capture highly similar sentence pairs effectively when they have different negation terms or word orders. In addition, time efficiency is dramatically different from the effectiveness results. On average, the BERT models were approximately 20 times and 50 times slower than the Convolutional Neural Network and BioSentVec models, respectively. This results in challenges for real-time applications. Conclusions Despite the excitement of further improving Pearson correlations in this data set, our results highlight that evaluations of the effectiveness and efficiency of STS models are critical. In future, we suggest more evaluations on the generalization capability and user-level testing of the models. We call for community efforts to create more biomedical and clinical STS data sets from different perspectives to reflect the multifaceted notion of sentence-relatedness.


Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 143
Author(s):  
Rodrigo L. Rose ◽  
Tejas G. Puranik ◽  
Dimitri N. Mavris

The complexity of commercial aviation operations has grown substantially in recent years, together with a diversification of techniques for collecting and analyzing flight data. As a result, data-driven frameworks for enhancing flight safety have grown in popularity. Data-driven techniques offer efficient and repeatable exploration of patterns and anomalies in large datasets. Text-based flight safety data presents a unique challenge in its subjectivity, and relies on natural language processing tools to extract underlying trends from narratives. In this paper, a methodology is presented for the analysis of aviation safety narratives based on text-based accounts of in-flight events and categorical metadata parameters which accompany them. An extensive pre-processing routine is presented, including a comparison between numeric models of textual representation for the purposes of document classification. A framework for categorizing and visualizing narratives is presented through a combination of k-means clustering and 2-D mapping with t-Distributed Stochastic Neighbor Embedding (t-SNE). A cluster post-processing routine is developed for identifying driving factors in each cluster and building a hierarchical structure of cluster and sub-cluster labels. The Aviation Safety Reporting System (ASRS), which includes over a million de-identified voluntarily submitted reports describing aviation safety incidents for commercial flights, is analyzed as a case study for the methodology. The method results in the identification of 10 major clusters and a total of 31 sub-clusters. The identified groupings are post-processed through metadata-based statistical analysis of the learned clusters. The developed method shows promise in uncovering trends from clusters that are not evident in existing anomaly labels in the data and offers a new tool for obtaining insights from text-based safety data that complement existing approaches.


2010 ◽  
Vol 36 (3) ◽  
pp. 341-387 ◽  
Author(s):  
Nitin Madnani ◽  
Bonnie J. Dorr

The task of paraphrasing is inherently familiar to speakers of all languages. Moreover, the task of automatically generating or extracting semantic equivalences for the various units of language—words, phrases, and sentences—is an important part of natural language processing (NLP) and is being increasingly employed to improve the performance of several NLP applications. In this article, we attempt to conduct a comprehensive and application-independent survey of data-driven phrasal and sentential paraphrase generation methods, while also conveying an appreciation for the importance and potential use of paraphrases in the field of NLP research. Recent work done in manual and automatic construction of paraphrase corpora is also examined. We also discuss the strategies used for evaluating paraphrase generation techniques and briefly explore some future trends in paraphrase generation.


2019 ◽  
Author(s):  
Negacy D. Hailu ◽  
Michael Bada ◽  
Asmelash Teka Hadgu ◽  
Lawrence E. Hunter

AbstractBackgroundthe automated identification of mentions of ontological concepts in natural language texts is a central task in biomedical information extraction. Despite more than a decade of effort, performance in this task remains below the level necessary for many applications.Resultsrecently, applications of deep learning in natural language processing have demonstrated striking improvements over previously state-of-the-art performance in many related natural language processing tasks. Here we demonstrate similarly striking performance improvements in recognizing biomedical ontology concepts in full text journal articles using deep learning techniques originally developed for machine translation. For example, our best performing system improves the performance of the previous state-of-the-art in recognizing terms in the Gene Ontology Biological Process hierarchy, from a previous best F1 score of 0.40 to an F1 of 0.70, nearly halving the error rate. Nearly all other ontologies show similar performance improvements.ConclusionsA two-stage concept recognition system, which is a conditional random field model for span detection followed by a deep neural sequence model for normalization, improves the state-of-the-art performance for biomedical concept recognition. Treating the biomedical concept normalization task as a sequence-to-sequence mapping task similar to neural machine translation improves performance.


Sign in / Sign up

Export Citation Format

Share Document