Modifying Stride Length in Isolation and in Combination With Foot Progression Angle and Step Width Can Improve Knee Kinetics Related to Osteoarthritis; A Preliminary Study in Healthy Subjects

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Shannon N. Edd ◽  
Sami Bennour ◽  
Baptiste Ulrich ◽  
Brigitte M. Jolles ◽  
Julien Favre

Abstract The purpose of this study was to determine the effects of modifying stride length (SL) on knee adduction and flexion moments, two markers of knee loading associated with medial-compartment knee osteoarthritis (OA) progression. This study also tested if SL modifications, in addition to foot progression angle (FP) and step width (SW) modifications, provide solutions in more subjects for reducing knee adduction moment (KAM) without increasing knee flexion moment (KFM), potentially protecting the joint. Fourteen healthy subjects (six female) were enrolled in this preliminary study. Walking trials were collected first without instructions, and then following foot placement instructions for 50 combinations of SL, FP, and SW modifications. Repeated measures analysis of variance was used to detect group-average effects of footprint modifications on maximum KAM and KFM and on KAM impulse. Subject-specific dose–responses between footprint modifications and kinetics changes were modeled with linear regressions, and the models were used to identify modification solutions, per subject, for various kinetics change conditions. Shorter SL significantly decreased the three kinetics measures (p < 0.01). Potential solutions for 10% reductions in maximum KAM and KAM impulse without increasing maximum KFM were identified for five subjects with FP and SW modifications. A significantly higher proportion of subjects had solutions when adding SL modifications (11 subjects, p = 0.04). In conclusion, SL is a valuable parameter to modify, especially in combination with FP and SW modifications, to reduce markers of medial knee loading. Future work is needed to extend these findings to osteoarthritic knees.

2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet (heels) were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement adjustment as a main mechanism of active control of mediolateral stability was compared between walking and running. Moreover, to verify the role of foot placement as a means of active control of ML stability and associated metabolic costs in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet (heels) as well as breath-by-breath oxygen consumption data were recorded during walking and running on a treadmill in normal and stabilized conditions. Coordination between ML trunk Center of Mass (CoM) state and subsequent ML foot placement, step width, and step width variability were assessed. Two-way repeated measures ANOVAs (either normal or SPM1d) were used to test for effects of walking vs. running and of normal vs. stabilized locomotion. We found a stronger association between ML trunk CoM state and foot placement in walking than in running from 90-100% of the gait cycle and also a higher step width variability in walking, but no significant differences in step width. The association between trunk CoM state and foot placement was significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running from 75-100% of gait cycle. Surprisingly, energy cost significantly increased by external lateral stabilization, which was more pronounced in running than walking. We conclude that ML foot placement is coordinated to the CoM kinematic state to stabilize both walking and running. This coordination is more tight in walking than in running and appears not to contribute substantially to the energy costs of either mode of locomotion.


2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet (heels) were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running and independent of speed in running.


2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


2019 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width and step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


2020 ◽  
Vol 10 (24) ◽  
pp. 8881
Author(s):  
Hanatsu Nagano ◽  
Rezaul Begg

The prevalence of knee osteoarthritis (OA) increases with ageing and this research aimed to identify gait adaptations that could reduce OA by investigating ageing effects on knee joint biomechanics. Participants were 24 healthy young males (18–35 yrs) and 14 healthy older males (60–75 yrs). Three-dimensional motion capture (Optotrak) and walkway-embedded force plates (AMTI) recorded their natural preferred-speed walking and the following parameters were computed: knee adduction moment, knee joint vertical force, foot contact angle, toe-out angle, foot centre of pressure displacement, time to foot flat, step length, step width and double support time. A 2 × 2 (age × limb) repeated measures mixed model analysis of variance design determined main effects and interactions. Pearson’s correlations between knee kinetic parameters and stride phase variables were also calculated. Both knee adduction moment and vertical joint force were larger in the older group. Relative to the young controls, older individuals showed a longer time to foot flat, less toe-out angle and wider steps. Correlation analysis suggested that reduced toe-out angle and increased step width were associated with lower knee adduction moment; furthermore, knee joint vertical force reduced with greater step length. Future research could focus on intervention strategies for managing excessive knee joint stresses to prevent the ageing-related development of knee OA.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7939 ◽  
Author(s):  
Mohammadreza Mahaki ◽  
Sjoerd M. Bruijn ◽  
Jaap H. van Dieën

It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement strategy as a main mechanism to control ML stability was compared between walking and running. Moreover, to verify the role of foot placement as a means to control ML stability in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet were recorded during walking and running on a treadmill in normal and stabilized conditions. Correlation between ML trunk CoM state and subsequent ML foot placement, step width, and step width variability were assessed. Paired t-tests (either SPM1d or normal) were used to compare aforementioned parameters between normal walking and running. Two-way repeated measures ANOVAs (either SPM1d or normal) were used to test for effects of walking vs. running and of normal vs. stabilized condition. We found a stronger correlation between ML trunk CoM state and ML foot placement and significantly higher step width variability in walking than in running. The correlation between ML trunk CoM state and ML foot placement, step width, and step width variability were significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running. We conclude that ML foot placement is coordinated to ML trunk CoM state to stabilize both walking and running and this coordination is stronger in walking than in running.


1987 ◽  
Vol 48 (4) ◽  
pp. 501-504 ◽  
Author(s):  
C. Doutremepuich ◽  
D. Pailley ◽  
M.C. Anne ◽  
O. de Séze ◽  
J. Paccalin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document