scholarly journals Geometric Deep Learning for Shape Correspondence in Mass Customization by Three-Dimensional Printing

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Jida Huang ◽  
Hongyue Sun ◽  
Tsz-Ho Kwok ◽  
Chi Zhou ◽  
Wenyao Xu

Abstract Many industries, such as human-centric product manufacturing, are calling for mass customization with personalized products. One key enabler of mass customization is 3D printing, which makes flexible design and manufacturing possible. However, the personalized designs bring challenges for the shape matching and analysis, owing to the high complexity and shape variations. Traditional shape matching methods are limited to spatial alignment and finding a transformation matrix for two shapes, which cannot determine a vertex-to-vertex or feature-to-feature correlation between the two shapes. Hence, such a method cannot measure the deformation of the shape and interested features directly. To measure the deformations widely seen in the mass customization paradigm and address the issues of alignment methods in shape matching, we identify the geometry matching of deformed shapes as a correspondence problem. The problem is challenging due to the huge solution space and nonlinear complexity, which is difficult for conventional optimization methods to solve. According to the observation that the well-established massive databases provide the correspondence results of the treated teeth models, a learning-based method is proposed for the shape correspondence problem. Specifically, a state-of-the-art geometric deep learning method is used to learn the correspondence of a set of collected deformed shapes. Through learning the deformations of the models, the underlying variations of the shapes are extracted and used for finding the vertex-to-vertex mapping among these shapes. We demonstrate the application of the proposed approach in the orthodontics industry, and the experimental results show that the proposed method can predict correspondence fast and accurate, also robust to extreme cases. Furthermore, the proposed method is favorably suitable for deformed shape analysis in mass customization enabled by 3D printing.

Author(s):  
Tsz-Ho Kwok ◽  
Hang Ye ◽  
Yong Chen ◽  
Chi Zhou ◽  
Wenyao Xu

Additive manufacturing, also known as three-dimensional (3D) printing, enables production of complex customized shapes without requiring specialized tooling and fixture, and mass customization can then be realized with larger adoption. The slicing procedure is one of the fundamental tasks for 3D printing, and the slicing resolution has to be very high for fine fabrication, especially in the recent developed continuous liquid interface production (CLIP) process. The slicing procedure is then becoming the bottleneck in the prefabrication process, which could take hours for one model. This becomes even more significant in mass customization, where hundreds or thousands of models have to be fabricated. We observe that the customized products are generally in a same homogeneous class of shape with small variation. Our study finds that the slicing information of one model can be reused for other models in the same homogeneous group under a properly defined parameterization. Experimental results show that the reuse of slicing information has a maximum of 50 times speedup, and its utilization is dropped from more than 90% to less than 50% in the prefabrication process.


Author(s):  
Jida Huang ◽  
Hongyue Sun ◽  
Tsz-Ho Kwok ◽  
Chi Zhou ◽  
Wenyao Xu

Abstract Many industries, such as human-centric product manufacturers, are calling for mass customization with personalized products. One key enabler of mass customization is 3D printing, which makes the flexible design and manufacturing possible. However, personalized designs bring obstacles for the shape matching and analysis, owing to the high complexity and large shape variations. Traditional shape matching methods are limited to shape alignment, which cannot determine the intrinsic in-variance of mass customized models. To extract the deformations widely seen in mass customization paradigm and address the issues of alignment methods in shape matching, we redefine the geometry matching problem as a correspondence problem, and solve for the correspondence of all vertices on a queried shape to a reference shape. A state-of-the-art geometric deep learning method is used to learn the correspondence of a set of collected models. Through learning the intrinsic deformations of the products, the underlying variations of the shapes are extracted. We demonstrate the application of the proposed approach in orthodontics industry, and the experimental results show the effectiveness of the proposed method and the defined problem is favorably suitable for shape analysis in mass customization.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yunliang Gao ◽  
Yuanyuan Tang ◽  
Da Ren ◽  
Shunhua Cheng ◽  
Yinhuai Wang ◽  
...  

ObjectiveTo evaluate the feasibility and effectivity of deep learning (DL) plus three-dimensional (3D) printing in the management of giant sporadic renal angiomyolipoma (RAML).MethodsThe medical records of patients with giant (>15 cm) RAML were retrospectively reviewed from January 2011 to December 2020. 3D visualized and printed kidney models were performed by DL algorithms and 3D printing technology, respectively. Patient demographics and intra- and postoperative outcomes were compared between those with 3D-assisted surgery (3D group) or routine ones (control group).ResultsAmong 372 sporadic RAML patients, 31 with giant ones were eligible for analysis. The median age was 40.6 (18–70) years old, and the median tumor size was 18.2 (15–28) cm. Seventeen of 31 (54.8%) had a surgical kidney removal. Overall, 11 underwent 3D-assisted surgeries and 20 underwent routine ones. A significant higher success rate of partial nephrectomy (PN) was noted in the 3D group (72.7% vs. 30.0%). Patients in the 3D group presented a lower reduction in renal function but experienced a longer operation time, a greater estimated blood loss, and a higher postoperative morbidity. Subgroup analysis was conducted between patients undergoing PN with or without 3D assistance. Despite no significant difference, patients with 3D-assisted PN had a slightly larger tumor size and higher nephrectomy score, possibly contributing to a relatively higher rate of complications. However, 3D-assisted PN lead to a shorter warm ischemia time and a lower renal function loss without significant difference. Another subgroup analysis between patients under 3D-assisted PN or 3D-assisted RN showed no statistically significant difference. However, the nearness of tumor to the second branch of renal artery was relatively shorter in 3D-assisted PN subgroup than that in 3D-assisted RN subgroup, and the difference between them was close to significant.Conclusions3D visualized and printed kidney models appear to be additional tools to assist operational management and avoid a high rate of kidney removal for giant sporadic RAMLs.


2015 ◽  
Vol 3 (8) ◽  
pp. 413-416
Author(s):  
Giacomo Marzi ◽  
◽  
Lamberto Zollo ◽  
Andrea Boccardi

2018 ◽  
Vol 6 (4) ◽  
pp. 440-447
Author(s):  
Amita Khatana ◽  
◽  
◽  
◽  
V.K Narang ◽  
...  

2019 ◽  
Vol 46 (7) ◽  
pp. 3180-3193 ◽  
Author(s):  
Ran Zhou ◽  
Aaron Fenster ◽  
Yujiao Xia ◽  
J. David Spence ◽  
Mingyue Ding

Author(s):  
Yuan-Wei Zhang ◽  
Xin Xiao ◽  
Wen-Cheng Gao ◽  
Yan Xiao ◽  
Su-Li Zhang ◽  
...  

Abstract Background This present study is aimed to retrospectively assess the efficacy of three-dimensional (3D) printing assisted osteotomy guide plate in accurate osteotomy of adolescent cubitus varus deformity. Material and methods Twenty-five patients (15 males and 10 females) with the cubitus varus deformity from June 2014 to December 2017 were included in this study and were enrolled into the conventional group (n = 11) and 3D printing group (n = 14) according to the different surgical approaches. The operation time, intraoperative blood loss, osteotomy degrees, osteotomy end union time, and postoperative complications between the two groups were observed and recorded. Results Compared with the conventional group, the 3D printing group has the advantages of shorter operation time, less intraoperative blood loss, higher rate of excellent correction, and higher rate of the parents’ excellent satisfaction with appearance after deformity correction (P < 0.001, P < 0.001, P = 0.019, P = 0.023). Nevertheless, no significant difference was presented in postoperative carrying angle of the deformed side and total complication rate between the two groups (P = 0.626, P = 0.371). Conclusions The operation assisted by 3D printing osteotomy guide plate to correct the adolescent cubitus varus deformity is feasible and effective, which might be an optional approach to promote the accurate osteotomy and optimize the efficacy.


2021 ◽  
Vol 1 ◽  
pp. 100006
Author(s):  
Gargi Jani ◽  
Abraham Johnson ◽  
Jeidson Marques ◽  
Ademir Franco

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Sign in / Sign up

Export Citation Format

Share Document