scholarly journals Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.

Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2019 ◽  
Vol 33 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Christopher M. Low ◽  
Jonathan M. Morris ◽  
Daniel L. Price ◽  
Jane S. Matsumoto ◽  
Janalee K. Stokken ◽  
...  

Background In the discipline of rhinology and endoscopic skull base surgery (ESBS), 3-dimensional (3D) printing has found meaningful application in areas including preoperative surgical planning as well as in surgical education. However, its scope of use may be limited due to the perception among surgeons that there exists a prohibitively high initial investment in resources and time to acquire the requisite technical expertise. Nevertheless, given the ever decreasing cost of advancing technology coupled with the need to understand the complex spatial relationships of the paranasal sinuses and skull base, the use of 3D printing in rhinology and ESBS is poised to blossom. Objective Help the reader identify current or potential future uses of 3D printing technology relevant to their rhinologic clinical or educational practice. Methods A review of published literature relating to 3D printing in rhinology and ESBS was performed. Results Results were reviewed and organized into 5 overarching categories including an overview of the 3D printing process as well as applications of 3D printing including (1) surgical planning, (2) custom prosthetics and implants, (3) patient education, and (4) surgical teaching and assessment. Conclusion In the discipline of rhinology and ESBS, 3D printing finds use in the areas of presurgical planning, patient education, prosthesis creation, and trainee education. As this technology moves forward, these products will be more broadly available to providers in the clinical and educational setting. The possible applications are vast and have great potential to positively impact surgical training, patient satisfaction, and most importantly, patient outcomes.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2663 ◽  
Author(s):  
Farnoosh Pahlevanzadeh ◽  
Rahmatollah Emadi ◽  
Ali Valiani ◽  
Mahshid Kharaziha ◽  
S. Ali Poursamar ◽  
...  

Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.


2021 ◽  
pp. 20200323
Author(s):  
Sawyer Rhae Badiuk ◽  
David K Sasaki ◽  
Daniel W Rickey

Objective: The aim of this study was to construct an anthropomorphic maxillofacial phantom for dental imaging and dosimetry purposes using three-dimensional (3D) printing technology and materials that simulate the radiographic properties of tissues. Methods: Stereolithography photoreactive resins, polyurethane rubber and epoxy resin were modified by adding calcium carbonate and strontium carbonate powders or glass bubbles. These additives were used to change the materials’ CT numbers to mimic various body tissues. A maxillofacial phantom was designed using CT images of a head. Results: Commercial 3D printing resins were found to have CT numbers near 120 HU and were used to print intervertebral discs and an external skin for the maxillofacial phantom. By adding various amounts of calcium carbonate and strontium carbonate powders the CT number of the resin was raised to 1000 & 1500 HU and used to print bone mimics. Epoxy resin modified by adding glass bubbles was used in assembly and as a cartilaginous mimic. Glass bubbles were added to polyurethane rubber to reduce the CT number to simulate soft tissue and filled spaces between the printed anatomy and external skin of the phantom. Conclusion: The maxillofacial phantom designed for dental imaging and dosimetry constructed using 3D printing, polyurethane rubbers and epoxy resins represented a patient anatomically and radiographically. The results of the designed phantom, materials and assembly process can be applied to generate different phantoms that better represent diverse patient types and accommodate different ion chambers.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Guo-You Wang ◽  
Yu-Feng Jin ◽  
Lu-Jing Xiong ◽  
Si-Yuan He ◽  
...  

Abstract Background: Reconstruction of coracoclavicular (CC) ligament has become a fundamental surgical method for acromioclavicular (AC) joint dislocation. Finding accurate location of bone tunnel is a key step in reconstruction of CC ligament. This study aims to explore accurate location of bone tunnel in reconstruction of CC ligament in virtual model vs. real model based on 3-dimensional (3D) printing navigation module technology. Methods: Eighty human shoulders including clavicle and scapula were scanned by dual-source computed tomography (CT). CT scans of shoulder joints including clavicle and scapula were imported and repositioned by Mimics 19.0 software to form a whole model, then find the best bone tunnel through digital optimization design. Next, in Mimics 19.0 and Geomagic Studio software, form the clavicle navigation module as virtual model for 3D printing, thus generate real model. Then 10 parameters of a real bone tunnel and virtual bone tunnel could be measured and compared.Results: Eighty human shoulders including clavicle and scapula were designed and printed successfully. Then 10 parameters of the real and virtual bone tunnel were recorded and compared. No difference was significantly found between the real and virtual bone tunnel in 10 parameters (p>0.05). Conclusions: Based on 3D printing navigation module technology, it was reliable to determine accurate location of bone tunnel for reconstruction of CC ligament, which could reduce the complications.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 504 ◽  
Author(s):  
Qiusheng Wang ◽  
Guocong Han ◽  
Shuqin Yan ◽  
Qiang Zhang

Three-dimensional (3D) printing is regarded as a critical technological-evolution in material engineering, especially for customized biomedicine. However, a big challenge that hinders the 3D printing technique applied in biomedical field is applicable bioink. Silk fibroin (SF) is used as a biomaterial for decades due to its remarkable high machinability and good biocompatibility and biodegradability, which provides a possible alternate of bioink for 3D printing. In this review, we summarize the requirements, characteristics and processabilities of SF bioink, in particular, focusing on the printing possibilities and capabilities of bioink. Further, the current achievements of cell-loading SF based bioinks were comprehensively viewed from their physical properties, chemical components, and bioactivities as well. Finally, the emerging issues and prospects of SF based bioink for 3D printing are given. This review provides a reference for the programmable and multiple processes and the further improvement of silk-based biomaterials fabrication by 3D printing.


Author(s):  
Hassan Rammal ◽  
Amin GhavamiNejad ◽  
Ahmet Erdem ◽  
Rene Mbeleck ◽  
Mohammad Nematollahi ◽  
...  

Hydrogels are important biomaterials that have several applications in drug and cell delivery, tissue engineering, in three-dimensional (3D) printing, and more recently in sensing and actuating applications. With the advent...


2020 ◽  
Author(s):  
Jorge Alfonso Tavares-Negrete ◽  
Alberto Emanuel Aceves-Colin ◽  
Delia Cristal Rivera-Flores ◽  
Gladys Guadalupe Díaz-Armas ◽  
Anne-Sophie Mertgen ◽  
...  

AbstractThe use of three-dimensional (3D) printing for biomedical applications has expanded exponentially in recent years. However, the current portfolio of 3D printable inks is still limited. For instance, only a few protein matrices have been explored as printing/bioprinting materials. Here, we introduce the use of zein, the primary constitutive protein in maize seeds, as a 3D-printable material. Zein-based inks were prepared by dissolving commercial zein powder in ethanol with or without polyethylene glycol (PEG400) as a plasticizer. The rheological characteristics of our materials, studied during 21 days of aging/maturation, showed an increase in the apparent viscosity as a function of time in all formulations. The addition of PEG 400 decreased the apparent viscosity. Inks with and without PEG400 and at different maturation times were tested for printability in a BioX bioprinter. We optimized the 3D printing parameters for each ink formulation in terms of extrusion pressure and linear printing velocity. Higher fidelity structures were obtained with inks that had maturation times of 10 to 14 days. We present different proof-of-concept experiments to demonstrate the versatility of the engineered zein inks for diverse biomedical applications. These include printing of complex and/or free-standing 3D structures, materials for controlled drug release, and scaffolds for cell culture.


2021 ◽  
Author(s):  
The Annals of Research

Background: The emerging Three-dimensional (3D) modelling improves intraoperative visualization, management, and analysis of available imaging data, the 3D form of available image, provides the surgeon with a better comprehension of the geometry, size, and exact relationship between target and normal tissue. The role of 3D modelling in orthopedic pelvic and hip surgical planning is brought to focus.Methods: The Medline database was searched using the keywords 3D printing, three dimensional printing, 3 dimensional printing and the results were screened for pelvis and hip surgery related full text articles. The duplicates and non-related articles were removed.Results: The articles were used to build a review with focus on Acetabulum, Pelvis, Hip and sacrum. We found that the role of 3D printing is non-negligible. The advances made with the help of 3D printing are wonderful and promising. The use of 3D saw its application in many fields. But the orthopedic surgery to our observance has benefitted the most till now.Conclusions: With the advances in the technology it is needed to make the 3D modelling easier, quicker, accurate, cost effective and reliable to help implement its deeper use in orthopedics. The authors believe that the 3D printing is an enormous help for the orthopedic surgeons which will only lead to positive outcomes.


Author(s):  
Paweł Fiedor ◽  
Joanna Ortyl

The following article introduces technologies that build 3 dimensional (3D) objects by adding layer-upon-layer of material, called also additive manufacturing technologies.  Furthermore most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing were covered. The micromanufacturing method covers photopolymerisation based methods such as Stereolithography (SLA), Digital Light Processing (DLP), Liquid Crystal Display – DLP coupled method, Two-Photon Polymerisation (TPP) and Inkjet based methods. Functional photocurable materials, with magnetic, conductive or specific optical applications in the 3D printing processes were also reviewed. 


Sign in / Sign up

Export Citation Format

Share Document