Static Elastic-Plastic Analysis of a Pipe Structure by the Transfer Matrix Method

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Masayuki Arai ◽  
Shoichi Kuroda ◽  
Kiyohiro Ito

Abstract Pipe systems have been widely used in industrial plants such as power stations. In these systems, the displacement and stress distributions often need to be predicted. Analytical and numerical methods, such as the finite element method (FEM), boundary element method (BEM), and frame structure method (FSM), are typically adopted to predict these distributions. The analytical methods, which can only be applied to problems with simple geometries and boundary conditions, are based on the Timoshenko beam theory. Both FEM and BEM can be applied to more complex problems, although this usually requires a stiffness matrix with a large number of degrees-of-freedom. In FSM, although the structure is modeled by a beam element, the stiffness matrix still becomes large; furthermore, the matrix size needed in FEM and BEM is also large. In this study, the transfer matrix method, which is simply referred to as TMM, is studied to effectively solve complex problems, such as a pipe structure under a small size stiffness matrix. The fundamental formula is extended to a static elastic-plastic problem. The efficiency and simplicity of this method in solving a space-curved pipe system that involves an elbow are demonstrated. The results are compared with those obtained by FEM to verify the performance of the method.

Author(s):  
Masayuki Arai ◽  
Shoichi Kuroda ◽  
Kiyohiro Ito

Abstract Pipe systems have been widely used in industrial plants such as power stations. In these systems, it is often required to predict the displacement and stress distribution. Analytical and numerical methods such as the finite element method (FEM), boundary element method (BEM), and frame structure method (FSM) are typically adopted to predict the displacement and stress distribution. The analytical methods are solved based on the Timoshenko beam theory, but the problem that can be solved is limited to simple geometry under simple boundary conditions. Both FEM and BEM can be applied to more complicated problems, although this usually involves a large number of degrees of freedom in a stiffness matrix. The structure is modeled by a beam element in FSM. However, the stiffness matrix still becomes large, as does the matrix size constructed in FEM and BEM. In this study, the transfer matrix method (TMM) is studied to effectively solve complicated problems such as a pipe structure under a small size of the stiffness matrix. The fundamental formula is extended to apply to an elastic-plastic problem. The efficiency and simplicity of this method is demonstrated to solve a space-curved pipe system that involves elbows. The results are compared with those obtained by FEM to verify this method.


In this paper, authors present a new numerical method, combining the Transfer Matrix Method and Finite Element Method (TMM - FEM), to analyze spatially circular curved bar, with general load and elastic support. Analysis space curved bar is complex problem because conventional methods will not simultaneously calculate the entire structure, or difficulty in establish the stiffness matrix, or the size of stiffness matrix is too large due to multiple elements. TMM - FEM method is proposed to promote the advantages of each method. Due to being directly generated from the parametric equations of the bar axis, the analytical results are accurate. Results are programed in Matlab and verified with SAP2000 programe.


Author(s):  
Hanjing Lu ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Yuanyuan Ding

Abstract The mixed method of Transfer Matrix Method for Multibody System (MSTMM) and Finite Element Method (FEM) is introduced in this paper. The transfer matrix and transfer equation of multi-rigid-body subsystem are deduced by MSTMM. The mass matrix and stiffness matrix of flexible subsystem are calculated by FEM and then its dynamics equation is established. The connection point relations among subsystems are deduced and the overall transfer matrix and transfer equation of multi-rigid-flexible system are established. The vibration characteristics of the system are obtained by solving the system frequency equation. The computational results of two numerical examples show that the proposed method have good agreements with MSTMM and FEM. Multi-rigid-flexible-body system with multi-end beam can be solved by proposed method, which extends the application field of MSTMM and provides a theoretical basis for calculating complex systems with multi input end flexible bodies of arbitrary shape.


Author(s):  
Shuaijun Li ◽  
Bryan W. Karney ◽  
Gongmin Liu

Analytical models of three dimensional pipe systems with fluid structure interaction (FSI) are described and discussed, in which the longitudinal vibration, transverse vibration and torsional vibration were included. The transfer matrix method (TMM) is used for the numerical modeling of both fluidic and structural equations and then applied to the problem of predicting the natural frequencies, modal shapes and frequency responses of pipe systems with various boundary conditions. The main advantage of the present approach is that each pipe section of pipe system can be independently analyzed by a unified matrix expression. Thus the modification of any parameter such as pipe shapes and branch numbers does not involve any change to the solution procedures. This makes a parameterized analysis and further mechanism investigation much easier to perform compared to most existing procedures.


2008 ◽  
Vol 123 (5) ◽  
pp. 3926-3926
Author(s):  
Fabien Chevillotte ◽  
Raymond Panneton ◽  
Hakim Bougrab ◽  
Christophe Chaut ◽  
Jean‐Luc Wojtowicki

Sign in / Sign up

Export Citation Format

Share Document