Estimation of Ventilation Impact on Fluid–Structure Interaction for Partially Cavitating Hydrofoils

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Eduard Amromin

Abstract Fluid–structure interaction is analyzed for natural and ventilated partial cavitation of conventional hydrofoils. Quasi-linear two-dimensional (2D) analysis of ideal fluid incompressible flow outside the cavity is coupled with one-dimensional analysis of compressible flows within the cavity and with analysis of hydrofoil bending vibration under impact of periodical oscillations of hydrodynamic forces. The old experimental data for hydrofoils Clark Y-11.7% and NACA 0015 are used for validation of this coupling. Estimations based on obtained computational results show that the force oscillations can be significantly mitigated by ventilation, whereas the ventilation effect on the cavity volume oscillation is less significant. The presented estimations also show that ventilation can suppress generation of shock waves in the cavity tail and affect their propagation.

Author(s):  
Carlos Pantano-Rubino ◽  
Kostas Karagiozis ◽  
Ramji Kamakoti ◽  
Fehmi Cirak

This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy.


Author(s):  
Erwan Liberge ◽  
Mustapha Benaouicha ◽  
Aziz Hamdouni

This paper describes Reduced Order Modeling (ROM) in Fluid Structure Interaction (FSI) and discusses Proper Orthogonal Decomposition (POD) utilization. The ROM method was selected because its performance in fluid mechanics. The principal problems of its application in FSI are due the space character of the modes resulting from the POD whereas domains are mobile. To use POD in moving domain, a charateristic function of fluid is introduced in order to work on a fixed rigid domain, and the global velocity (fluid and structure) is studied. The POD modes efficiency is tested to reconstruct velocity field in one and two-dimensional FSI case. Then reducing dynamic system using POD is introduced in moving boundaries problem. In addition, the one dimensional case of Burgers equation coupled with spring equation is tested.


2006 ◽  
Vol 39 ◽  
pp. S443
Author(s):  
W.G. Li ◽  
X.Y. Luo ◽  
N.A. Hill ◽  
A.G. Johnson ◽  
N. Bird ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 1844 ◽  
Author(s):  
David Ferras ◽  
Pedro Manso ◽  
Anton Schleiss ◽  
Dídia Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid–Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses are documented.


Sign in / Sign up

Export Citation Format

Share Document