Enhancing the Accuracy of Vertical Ground Reaction Force Measurement During Walking Using Pressure-Measuring Insoles

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jessica DeBerardinis ◽  
Mohamed B. Trabia ◽  
Janet S. Dufek ◽  
Yann Le Gall ◽  
Nicolas Da Silva Sacoto

Abstract Pressure-measuring insoles can be an attractive tool for measuring ground reaction force (GRF) since they are portable and can record multiple consecutive steps. Several researchers have, however, observed that these insoles are less accurate than instrumented force platforms. To address this issue, the authors identified transfer functions that best described each insole size to enhance the measurements of the vertical component of GRF during walking. GRF data were collected from 29 participants (6/23 male/female, 24.3 ± 6.7 yrs, 70.4 ± 23.9 kg, 1.66 ± 0.11 m) using Medilogic® pressure-measuring insoles and Kistler® force platforms for three walking trials. Participants provided the institutionally approved written consent (IRB #724468). The data from both instruments were preprocessed. A subset of the data was used to train the system identification toolbox (matlab) to identify the coefficients of several candidate transfer functions for each insole size. The resulting transfer functions were compared using all available data for each insole to assess which one modified the insole data to be closer to that of the force platform. All tested transfer functions moved the vertical component of GRF closer to the corresponding force platform data. Each insole size had a specific transfer model that that yielded the best results. Using system identification techniques produced transfer functions that, when using insole data of the vertical component of GRF as input, produced output that is comparable to the corresponding measurement using an instrumented force platform.

2021 ◽  
Vol 80 (1) ◽  
pp. 19-27
Author(s):  
Alfonso Vargas-Macías ◽  
Irene Baena-Chicón ◽  
Joanna Gorwa ◽  
Robert A. Michnik ◽  
Katarzyna Nowakowska-Lipiec ◽  
...  

Abstract Footwork is one of the basic features of flamenco dancing and is performed in traditional high-heeled shoes. The purpose of this study was to analyse the mechanical profile of flamenco dancing in terms of vertical ground reaction force, and knee joint kinematics of the supporting limb in footwork technique in order to understand causes which predispose injuries derived from the practice of flamenco dancing. The participant in our study was a professional female flamenco dancer (34 years, 58 kg, 1.65 m) who performed the ZAP 3 test, a sequence of single strikes of the feet performed continuously for 15 s. 3D lower extremity kinematic data were collected using a five-camera motion analysis system (Vicon; Oxford Metrics Ltd., Oxford, UK). Ground reaction forces were recorded using a Kistler force plate. Our analysis was based on 30 cycles of each lower limb consisting of 177 footwork steps. The vertical component of the ground reaction force did not reveal any significant differences between the left and the right limb. The most dynamic strike was provided by the heel (twice the participant's body weight). The mean angular displacement of the supporting limb’s knee was ~27°. Results reveal that these impacts could make the knee joint more prone to injuries.


2021 ◽  
Vol 8 (1) ◽  
pp. 17-22
Author(s):  
Ensieh Pourhosaingholi ◽  
◽  
Hassan Saeedi ◽  
Mohammad Kamali ◽  
◽  
...  

Background: Ankle Foot Orthoses (AFOs) are often prescribed in patients with drop foot. The purpose of this study was to investigate the effect of the novel designed storing-restoring hybrid passive AFO versus Posterior Leaf Spring (PLS) AFO on the peak and timing of vertical component of ground reaction force (vGRF) in patients with drop foot. Objectives: the effect of novel designed storing-restoring hybrid passive AFO versus posterior leaf spring AFO on the peak and timing of Vertical Ground Reaction Force (vGRF) in drop foot patients. Methods: Ten adults with drop foot (7 males and 3 females) were included in this study. Then, these patients walked at a self-selected speed with two AFOs. For each trial, the vGRF components were obtained using a Kistler force plate. Results: the Independent t-test results showed a significant increase in the impact force in spring damper AFO than PLS (p<0.001). Significant differences were also found in the first and third peaks of vertical force and time of occurrence as well as the first minimum force and time of occurrence in spring damper than PLS AFO (p<0.001). Conclusion: the novel AFO affects not only the impact force and peak of vGRF but also the timing of these forces. These changes indicate an improvement in the overall performance of the novel AFO.


Author(s):  
Ryu Nagahara ◽  
Jean-Benoit Morin

Temporal variables and vertical ground reaction force have been used as measures characterizing sprinting. A recently developed wireless pressure sensor insole (sensor insole) could be useful for monitoring sprinting in terms of temporal variables and vertical ground reaction force during training sessions. The purpose of this study was to examine the concurrent validity of the sensor insole for measuring temporal and vertical force variables during sprinting. One athlete performed five 50-m sprints, and the step-to-step vertical ground reaction force and plantar pressure were simultaneously measured by a long-force platform system (reference device) and the sensor insole, respectively. The temporal and vertical ground reaction force variables were calculated using signals from both devices, and a comparison was made between values obtained with both devices for 125 steps analyzed. The percentage bias, 95% limits of agreement, and Bland–Altman plots showed low agreement with the reference device for all variables except for step frequency. For the vertical ground reaction force variables, the sensor insole underestimated the values (−18.9 to −48.3%) compared to the force platform. While support time and time to maximal vertical force from the foot strike were overestimated by the sensor insole (54.6 ± 8.0% and 94.2 ± 23.2%), flight time was underestimated (−48.2 ± 15.0%). Moreover, t-test revealed the significant difference in all variables between the sensor insole and force platform, except for step frequency. The bias for step frequency (0.4 ± 7.5%) was small. However, there was heteroscedasticity for all variables. The results from this study demonstrate that a wireless pressure sensor insole is generally not valid to measure the temporal and vertical force variables during sprinting. Thus, using the examined sensor insole for monitoring sprinting characteristics is not recommended at this time.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


1991 ◽  
Vol 71 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
R. Kram

People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.


Sign in / Sign up

Export Citation Format

Share Document