scholarly journals Ignition Probability and Lean Ignition Behaviour of a Swirled Premixed Bluff-Body Stabilised Annular Combustor

Author(s):  
Roberto Ciardiello ◽  
Rohit Pathania ◽  
Patton Allison ◽  
Pedro M. de Oliveira ◽  
Epaminondas Mastorakos

Abstract An experimental investigation was performed in a premixed annular combustor equipped with multiple swirl, bluff body burners to assess ignition probability and provide insights into the mechanisms of failure and of successful flame propagation. Two configurations were employed, with 12 and 18 burners, mixture velocity was varied between 10 and 30 m/s, and equivalence ratio between 0.58 and 0.68. Ignition was initiated by a sequence of sparks and "ignition" is defined as successful ignition of the whole annular combustor. Mechanism of success and failure of the ignition process was investigated via high-speed imaging of OH*chemiluminescence. Lean ignition limits were evaluated and compared to the lean blow-off limits. It was found that failure is linked to the trapping of the flame kernel inside the inner recirculation zone (IRZ) of a single burner, followed by localised quenching on the bluff body due to heat losses. In contrast, for a successful ignition, it was necessary for the flame kernel to propagate to the adjacent burner. Finally, the ignition probability(Pign) was obtained for different spark locations. It was found that sparking inside the recirculation zone resulted in Pign~0 for most conditions, while Pign increased moving the spark away from the bluff body or placing it between two burners and peaked to Pign~1 when the spark was located downstream in the combustion chamber. The results provide information on the most favorable conditions for achieving ignition and could help design and optimization of realistic gas turbine combustors.

Author(s):  
Roberto Ciardiello ◽  
Rohit S. Pathania ◽  
Patton M. Allison ◽  
Pedro M. de Oliveira ◽  
Epaminondas Mastorakos

Abstract An experimental investigation was performed in a premixed annular combustor equipped with multiple swirl, bluff body burners to assess the ignition probability and to provide insights into the mechanisms of failure and of successful propagation. The experiments are done at conditions that are close to the lean blow-off limit (LBO) and hence the ignition is difficult and close to the limiting condition when ignition is not possible. Two configurations were employed, with 12 and 18 burners, the mixture velocity was varied between 10 and 30 m/s, and the equivalence ratio (ϕ) between 0.58 and 0.68. Ignition was initiated by a sequence of sparks (2 mm gap, 10 sparks of 10 ms each) and “ignition” is defined as successful ignition of the whole annular combustor. The mechanism of success and failure of the ignition process and the flame propagation patterns were investigated via high-speed imaging (10 kHz) of OH* chemiluminescence. The lean ignition limits were evaluated and compared to the lean blow-off limits, finding the 12-burner configuration is more stable than the 18-burner. It was found that failure is linked to the trapping of the initial flame kernel inside the inner recirculation zone (IRZ) of a single burner adjacent to the spark, followed by localised quenching on the bluff body probably due to heat losses. In contrast, for a successful ignition, it was necessary for the flame kernel to propagate to the adjacent burner or for a flame pocket to be convected downstream in the chamber to grow and start propagating upwards. Finally, the ignition probability (Pign) was obtained for different spark locations. It was found that sparking inside the recirculation zone resulted in Pign ∼ 0 for most conditions, while Pign increased moving the spark away from the bluff-body or placing it between two burners and peaked to Pign ∼ 1 when the spark was located downstream in the combustion chamber, where the velocities are lower and the turbulence less intense. The results provide information on the most favourable conditions for achieving ignition in a complex multi-burner geometry and could help the design and optimisation of realistic gas turbine combustors.


Author(s):  
Brandon Sforzo ◽  
Hoang Dao ◽  
Sheng Wei ◽  
Jerry Seitzman

The effects of jet fuel composition on ignition probability have been studied in a flowfield that is relevant to turbine engine combustors, but also fundamental and conducive to modeling. In the experiments, a spark kernel is ejected from a wall and propagates transversely into a crossflow. The kernel first encounters an air-only stream before transiting into a second, flammable (premixed) stream. The two streams have matched velocities, as verified by hot-wire measurements. The liquid fuels span a range of physical and chemical kinetic properties. To focus on their chemical differences, the fuels are prevaporized in a carrier air flow before being injected into the experimental facility. Ignition probabilities at atmospheric pressure and elevated crossflow temperature were determined from optical measurements of a large number of spark events, and high speed imaging was used to characterize the kernel evolution. Eight fuel blends were tested experimentally; all exhibited increasing ignition probability as equivalence ratio increased, at least up to 1.5. Statistically significant differences between fuels were measured that have some correlation with fuel properties. To elucidate these trends, the forced ignition process was also studied with a reduced order numerical model of an entraining kernel. The simulations suggest ignition is successful if sufficient heat release occurs before entrainment of colder crossflow fluid quenches the exothermic oxidation reactions. As the kernel is initialized in air, it remains lean during the initial entrainment of the fuel-air mixture; thus richer crossflows lead to quicker and higher exothermicity.


Author(s):  
Brandon Sforzo ◽  
Hoang Dao ◽  
Sheng Wei ◽  
Jerry Seitzman

The effects of jet fuel composition on ignition probability have been studied in a flowfield that is relevant to turbine engine combustors, but also fundamental and conducive to modeling. In the experiments, a spark kernel is ejected from a wall and propagates transversely into a crossflow. The kernel first encounters an air-only stream before transiting into a second, flammable (premixed) stream. The two streams have matched velocities, as verified by hot-wire measurements. The liquid fuels span a range of physical and chemical kinetic properties. To focus on their chemical differences, the fuels are prevaporized in a carrier air flow before being injected into the experimental facility. Ignition probabilities at atmospheric pressure and elevated crossflow temperature were determined from optical measurements of a large number of spark events, and high-speed imaging was used to characterize the kernel evolution. Eight fuel blends were tested experimentally; all exhibited increasing ignition probability as equivalence ratio increased, at least up to the maximum value studied (∼0.8). Statistically significant differences between fuels were measured that have some correlation with fuel properties. To elucidate these trends, the forced ignition process was also studied with a reduced-order numerical model of an entraining kernel. The simulations suggest ignition is successful if sufficient heat release occurs before entrainment of colder crossflow fluid quenches the exothermic oxidation reactions. As the kernel is initialized in air, it remains extremely lean during the initial entrainment of the fuel–air mixture; thus, richer crossflows lead to quicker and higher exothermicity.


Author(s):  
Maxime Philip ◽  
Matthieu Boileau ◽  
Ronan Vicquelin ◽  
Thomas Schmitt ◽  
Daniel Durox ◽  
...  

Ignition is a problem of fundamental interest with critical practical implications. While there are many studies of ignition of single injector configurations, the transient ignition of a full annular combustor has not been extensively investigated, mainly because of the added geometrical complexity. The present investigation combines simulations and experiments on a complete annular combustor. The setup, developed at EMC2 (Energétique Moléculaire et Macroscopique Combustion) Laboratory (Mesa, AZ), features sixteen swirl injectors and quartz walls allowing direct visualization of the flame. High speed imaging is used to record the space time flame structure and study the dynamics of the light-round process. On the numerical side, massively parallel computations are carried out in the large eddy simulation (LES) framework using the filtered tabulated (F-TACLES) flamelet model. Comparisons are carried out at different instants during the light-round process between experimental data and results of calculations. It is found that the simulation results are in remarkable agreement with experiments provided that the thermal effects at the walls are considered. Further analysis indicate that the flame burning velocity and flame front geometry are close to those found in the experiment. This investigation confirms that the LES framework used for these calculations and the selected combustion model are adequate for such calculations but that further work is needed to show that ignition prediction can be used reliably over a range of operating parameters.


Author(s):  
Maxime Philip ◽  
Matthieu Boileau ◽  
Ronan Vicquelin ◽  
Thomas Schmitt ◽  
Daniel Durox ◽  
...  

Ignition is a problem of fundamental interest with critical practical implications. While there are many studies of ignition of single injector configurations, the transient ignition of a full annular combustor has not been extensively investigated, mainly because of the added geometrical complexity. The present investigation combines simulations and experiments on a complete annular combustor. The setup, developed at EM2C laboratory, features sixteen swirl injectors and quartz walls allowing direct visualization of the flame. High speed imaging is used to record the space time flame structure and study the dynamics of the light-round process. On the numerical side, massively parallel computations are carried out in the LES framework using the Filtered Tabulated (F-TACLES) flamelet model. Comparisons are carried out at different instants during the light-round process between experimental data and results of calculations. It is found that the simulation results are in remarkable agreement with experiments provided that the thermal effects at the walls are considered. Further post-processings indicate that the flame burning velocity and flame front geometry are close to those found in the experiment. This analysis confirms that the LES framework used for these calculations and the selected combustion model are adequate for such calculations but that further work is needed to confirm that ignition prediction can be used reliably over a range of operating parameters.


Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

This paper describes experimental measurements of forced ignition of prevaporized liquid fuels in a well-controlled facility that incorporates non-uniform flow conditions similar to those of gas turbine engine combustors. The goal here is to elucidate the processes by which the initially unfueled kernel evolves into a self-sustained flame. Three fuels are examined: a conventional Jet-A and two synthesized fuels that are used to explore fuel composition effects. A commercial, high-energy recessed cavity discharge igniter located at the test section wall ejects kernels at 15 Hz into a preheated, striated crossflow. Next to the igniter wall is an unfueled air flow; above this is a premixed, prevaporized, fuel-air flow, with a matched velocity and an equivalence ratio near 0.75. The fuels are prevaporized in order to isolate chemical effects. Differences in early ignition kernel development are explored using three, synchronized, high-speed imaging diagnostics: schlieren, emission/chemiluminescence, and OH planar laser-induced fluorescence (PLIF). The schlieren images reveal rapid entrainment of crossflow fluid into the kernel. The PLIF and emission images suggest chemical reactions between the hot kernel and the entrained fuel-air mixture start within tens of microseconds after the kernel begins entraining fuel, with some heat release possibly occurring. Initially, dilution cooling of the kernel appears to outweigh whatever heat release occurs; so whether the kernel leads to successful ignition or not, the reaction rate and the spatial extent of the reacting region decrease significantly with time. During a successful ignition event, small regions of the reacting kernel survive this dilution and are able to transition into a self-sustained flame after ∼1–2 ms. The low aromatic/low cetane number fuel, which also has the lowest ignition probability, takes much longer for the reaction zone to grow after the initial decay. The high aromatic, more easily ignited fuel, shows the largest reaction region at early times.


2019 ◽  
Vol 56 (6) ◽  
pp. 521-532
Author(s):  
Daisuke Doi ◽  
Hiroshi Seino ◽  
Shinya Miyahara ◽  
Masayoshi Uno

Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

This paper describes experimental measurements of forced ignition of prevaporized liquid fuels in a well-controlled facility that incorporates nonuniform flow conditions similar to those of gas turbine engine combustors. The goal here is to elucidate the processes by which the initially unfueled kernel evolves into a self-sustained flame. Three fuels are examined: a conventional Jet-A and two synthesized fuels that are used to explore fuel composition effects. A commercial, high-energy recessed cavity discharge igniter located at the test section wall ejects kernels at 15 Hz into a preheated, striated crossflow. Next to the igniter wall is an unfueled air flow; above this is a premixed, prevaporized, fuel–air flow, with a matched velocity and an equivalence ratio near 0.75. The fuels are prevaporized in order to isolate chemical effects. Differences in early ignition kernel development are explored using three synchronized, high-speed imaging diagnostics: schlieren, emission/chemiluminescence, and OH planar laser-induced fluorescence (PLIF). The schlieren images reveal rapid entrainment of crossflow fluid into the kernel. The PLIF and emission images suggest chemical reactions between the hot kernel and the entrained fuel–air mixture start within tens of microseconds after the kernel begins entraining fuel, with some heat release possibly occurring. Initially, dilution cooling of the kernel appears to outweigh whatever heat release occurs; so whether the kernel leads to successful ignition or not, the reaction rate and the spatial extent of the reacting region decrease significantly with time. During a successful ignition event, small regions of the reacting kernel survive this dilution and are able to transition into a self-sustained flame after ∼1–2 ms. The low-aromatic/low-cetane-number fuel, which also has the lowest ignition probability, takes much longer for the reaction zone to grow after the initial decay. The high-aromatic, more easily ignited fuel, shows the largest reaction region at early times.


Author(s):  
Daniel Durox ◽  
Kevin Prieur ◽  
Thierry Schuller ◽  
Sébastien Candel

It is known from cold flow experiments that linear arrays of injectors may feature different types of aerodynamic patterns (see for example ASME-GT2013-94280, ASME-GT2014-25094). There are however no indications on what can happen under hot fire conditions since most experiments have been carried out in the absence of reaction or in single injector configurations. It is now possible to investigate this issue by making use of a recently developed annular combustion chamber. This device designated as MICCA is equipped with multiple swirling injectors and its side walls are made of quartz providing full optical access to the flame region thus allowing detailed studies of the combustion region structure and dynamics. Experiments reported in this article rely on direct observations of the flame region through light emission imaging using two standard cameras and an intensified high speed CMOS camera. The data gathered indicate that interactions between successive injectors give rise to patterns of flames which exhibit an alternate geometry where one flame has a relatively low expansion angle while the next spreads sideways. This pattern is then repeated with a period which corresponds to twice the injector spacing. Such arrangements arise when the angle of the cup used as the end-piece of each injector exceeds a critical value. Effects of mass flow rate, equivalence ratio, and injector offset are also investigated. It is shown that the angle which defines the cup opening is the main control parameter. It is also found that when this angle exceeds a certain value and when the laminar burning velocity is fast enough, the flame pattern switches in an unsteady manner between two possible configurations. This unsteady behavior is characterized using high-speed imaging. It is finally shown that these alternating flame patterns lead to alternating heat release rate distributions and inhomogeneous heat transfer to the chamber walls featuring a helicoidal pattern.


2018 ◽  
Author(s):  
Mohammadrasool Morovatiyan ◽  
Martia Shahsavan ◽  
Mengyan Shen ◽  
John Hunter Mack

Lean-burn engines are important due to their ability to reduce emissions, increase fuel efficiency, and mitigate engine knock. In this study, the surface roughness of spark plug electrodes is investigated as a potential avenue to extend the lean flammability limit of natural gas. A nano-/micro-morphology modification is applied on surface of the spark plug electrode to increase its surface roughness. High-speed Z-type Schlieren visualization is used to investigate the effect of the electrode surface roughness on the spark ignition process in a premixed methane-air charge at different lean equivalence ratios. In order to observe the onset of ignition and flame kernel behavior, experiments were conducted in an optically accessible constant volume combustion chamber at ambient pressures and temperatures. The results indicate that the lean flammability limit of spark-ignited methane can be lowered by modulating the surface roughness of the spark plug electrode.


Sign in / Sign up

Export Citation Format

Share Document