Elastic Properties and Nonlinear Elasticity of the Noncarbon Hexagonal Lattice Nanomaterials Based on the Multiscale Modeling

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Sandeep Singh ◽  
B. M. Ravi Raj ◽  
Kiran D. Mali ◽  
Gaurav Watts

Abstract This study presents the elastic properties and nonlinear elasticity of the two-dimensional noncarbon nanomaterials of hexagonal lattice structures having molecular structure XY. Four nitride-based and two phosphide-based two-dimensional nanomaterials, having graphene-like hexagonal lattice structure, are considered in the present study. The four empirical parameters associated with the attractive and repulsive terms of the Tersoff–Brenner potential are calibrated for noncarbon nanomaterials and tested for elastic properties, nonlinear constitutive behavior, bending modulus, bending and torsional energy. The mathematical identities for the tangent constitutive matrix in terms of the interatomic potential function are derived through an atomistic–continuum coupled multiscale framework of the extended version of Cauchy–Born rule. The results obtained using newly calibrated empirical parameters for cohesive energy, bond length, elastic properties, and bending rigidity are compared with those reported in the literature through experimental investigations and quantum mechanical calculations. The continuum approximation is attained through the finite element method. Multiscale evaluations for elastic properties and nonlinear stretching of the nanosheets under in-plane loads are also compared with those obtained from atomistic simulations.

Author(s):  
Han Lin ◽  
Shou Liu ◽  
Xiangsu Zhang

Technique of fabricating two-dimensional (2D) photonic crystals (PCs) in silicon wafers using the combination of holographic lithography and wet etching is described in the paper. The fabricated silicon material is suitable to be used as porous silicon for Ge/Si quantum dots growth or other applications. Single exposure holographic method was adopted to fabricate the photoresist mask with the pattern of 2D hexagonal lattice structure. HF:HNO3:CH3COOH = 4:4:3 solution was used to etch circular pores with bowl-shaped bottom into silicon substrate at room temperature with 30 s etching time. Periodic structure in silicon with 1 μm lattice constant and 200 nm pore depth was obtained in the experiment. The fabrication process is fast and cost-effective thus having the potential for industrial mass production of porous silicon.


2016 ◽  
Vol 681 ◽  
pp. 012044
Author(s):  
Y V Alexandrov ◽  
A A Batanova ◽  
E V Gladkova ◽  
P E Dyshlovenko ◽  
A N Nagatkin ◽  
...  

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Y. L. Xu ◽  
C. Q. Chen ◽  
X. G. Tian

Hierarchical structures are structures that themselves contain structural elements. Hierarchical lattice structures are counterparts of the traditional lattice structures, whose walls are replaced by some kind of structure. In this paper, wave propagation in two-dimensional hierarchical hexagonal lattice structures is calculated by the finite element method with the Bloch theory. Attention is devoted to the comparison of the band gap, wave mode, dispersion surface, and phase and group velocities between the second-order hierarchical hexagonal lattice structures and their first-order traditional counterpart. The results show that the former structures have more band gaps and similar isotropic wave behavior in the low frequency compared to the latter structure. The structure hierarchy is favorable for the periodic lattice structure to filtering or guiding wave at some circumstances to meet the demands of engineering.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yung-Chang Lin ◽  
Sungwoo Lee ◽  
Yueh-Chiang Yang ◽  
Po-Wen Chiu ◽  
Gun-Do Lee ◽  
...  

AbstractInterhalogen compounds (IHCs) are extremely reactive molecules used for halogenation, catalyst, selective etchant, and surface modification. Most of the IHCs are unstable at room temperature especially for the iodine-monofluoride (IF) whose structure is still unknown. Here we demonstrate an unambiguous observation of two-dimensional (2D) IF bilayer grown on the surface of WSe2 by using scanning transmission electron microscopy and electron energy loss spectroscopy. The bilayer IF shows a clear hexagonal lattice and robust epitaxial relationship with the WSe2 substrate. Despite the IF is known to sublimate at −14 °C and has never found as a solid form in the ambient condition, but surprisingly it is found stabilized on a suitable substrate and the stabilized structure is supported by a density functional theory. This 2D form of IHC is actually a byproduct during a chemical vapor deposition growth of WSe2 in the presence of alkali metal halides as a growth promoter and requires immediate surface passivation to sustain. This work points out a great possibility to produce 2D structures that are unexpected to be crystallized or cannot be obtained by a simple exfoliation but can be grown only on a certain substrate.


1992 ◽  
Vol 296 ◽  
Author(s):  
Robert S. Sinkovits ◽  
Lee Phillips ◽  
Elaine S. Oran ◽  
Jay P. Boris

AbstractThe interactions of shocks with defects in two-dimensional square and hexagonal lattices of particles interacting through Lennard-Jones potentials are studied using molecular dynamics. In perfect lattices at zero temperature, shocks directed along one of the principal axes propagate through the crystal causing no permanent disruption. Vacancies, interstitials, and to a lesser degree, massive defects are all effective at converting directed shock motion into thermalized two-dimensional motion. Measures of lattice disruption quantitatively describe the effects of the different defects. The square lattice is unstable at nonzero temperatures, as shown by its tendency upon impact to reorganize into the lower-energy hexagonal state. This transition also occurs in the disordered region associated with the shock-defect interaction. The hexagonal lattice can be made arbitrarily stable even for shock-vacancy interactions through appropriate choice of potential parameters. In reactive crystals, these defect sites may be responsible for the onset of detonation. All calculations are performed using a program optimized for the massively parallel Connection Machine.


1994 ◽  
Vol 49 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Robb Thomson ◽  
S. J. Zhou

Sign in / Sign up

Export Citation Format

Share Document