scholarly journals Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1474 ◽  
Author(s):  
Francesco Castellani ◽  
Luigi Garibaldi ◽  
Alessandro Paolo Daga ◽  
Davide Astolfi ◽  
Francesco Natili

Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring.

Author(s):  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Konstantinos Gryllias

Abstract Under the pressure of climate change, renewable energy gradually replaces fossil fuels and plays nowadays a significant role in energy production. The O&M costs of wind turbines may easily reach up to 25% of the total leverised cost per kWh produced over the lifetime of the turbine for a new unit. Manufacturers and operators try to reduce O&M by developing new turbine designs and by adopting condition monitoring approaches. One of the most critical assembly of wind turbines is the gearbox. Gearboxes are designed to last till the end of asset's lifetime, according to the IEC 61400-4 standards but a recent study indicated that gearboxes might have to be replaced as early as 6.5 years. A plethora of sensor types and signal processing methodologies have been proposed in order to accurately detect and diagnose the presence of a fault but often the gearbox is equipped with a limited number of sensors and a simple global diagnostic indicator is demanded, being capable to detect globally various faults of different components. The scope of this paper is the application and comparison of a number of blind global diagnostic indicators which are based on Entropy, on Negentropy, on Sparsity and on Statistics. The performance of the indicators is evaluated on a wind turbine data set with two different bearing faults. Among the different diagnostic indicators Permutation entropy, Approximate entropy, Samples entropy, Fuzzy entropy, Conditional entropy and Wiener entropy achieve the best results detecting blindly the two failure events.


Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


2013 ◽  
Vol 347-350 ◽  
pp. 117-120
Author(s):  
Zhao Ran Hou

Vibration signal was a carrier of fault features of the wind turbine transmission system, it can reflect most of the fault information of the wind turbine transmission system. According to the frequency domain features of the roller bearing fault, wavelet packet transform for feature extraction was proposed as the characteristics of wind turbines in the presence of a large number of transient and non-stationary signals. The characteristics of wavelet packet was analyzed, combined with the wind turbines in the rolling bearing fault characteristic vibration extraction methods, the rolling bearing fault diagnosis was realized through the wavelet packet decomposition and reconstruction, the procedure was given. The simulation result shows that this application can reflect relationship of the failure characteristics and frequency domain feature vectors, also the nonlinear mapping ability of neural networks was played and the fault diagnosis capability enhanced.


2011 ◽  
Vol 58-60 ◽  
pp. 771-775
Author(s):  
Hai Bo Zhang ◽  
Liang Liu

According to the failure of wind turbines in operation, the failure cause and phenomenon of wind turbines is analyzed, combined with the reliability of wind turbine subsystems, measures aiming at cooperation parts and purchased parts are proposed, the reliability of the whole wind turbines is improved in a certain extent. At the same time, condition monitoring system can carry through the early detecting and diagnosing to potential component failure maintain. Besides, automatic lubrication system can realize accurate and timeliness lubrication, also can reduce maintenance workload, preserve correct lubrication and smooth running of all parts.


2019 ◽  
Author(s):  
Joseph C. Y. Lee ◽  
Peter Stuart ◽  
Andrew Clifton ◽  
M. Jason Fields ◽  
Jordan Perr-Sauer ◽  
...  

Abstract. Wind turbine power production deviates from the reference power curve in real-world atmospheric conditions. Correctly predicting turbine power performance requires models to be validated for a wide range of wind turbines using inflow in different locations. The Share-3 exercise is the most recent intelligence-sharing exercise of the Power Curve Working Group, which aims to advance the modeling of turbine performance. The goal of the exercise is to search for modeling methods that reduce error and uncertainty in power prediction when wind shear and turbulence digress from design conditions. Herein, we analyze the data of 55 wind turbine power performance tests from 9 contributing organizations with statistical tests to quantify the skills of the prediction-correction methods. We assess the accuracy and precision of four proposed trial methods against the Baseline method, which uses the conventional definition of power curve with wind speed and air density at hub height. The trial methods reduce power-production prediction errors compared to the Baseline method at high wind speeds, which contribute heavily to power production; however, the trial methods fail to significantly reduce prediction uncertainty in most meteorological conditions. For the meteorological conditions when a wind turbine produces less than the power its reference power curve suggests, using power deviation matrices leads to more accurate power prediction. We also identify that for more than half of the submissions, the data set has a large influence on the effectiveness of a trial method. Overall, this work affirms the value of data-sharing efforts in advancing power-curve modeling and establishes the groundwork for future collaborations.


2015 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Bavo De Maré ◽  
Jacob Sukumaran ◽  
Mia Loccufier ◽  
Patrick De Baets

While the number of offshore wind turbines is growing and turbines getting bigger and more expensive, the need for good condition monitoring systems is rising. From the research it is clear that failures of the gearbox, and in particular the gearwheels and bearings of the gearbox, have been responsible for the most downtime of a wind turbine. Gearwheels and bearings are being simulated in a multi-sensor environment to observe the wear on the surface.


2021 ◽  
Vol 11 (17) ◽  
pp. 8033
Author(s):  
Juan-Jose Saucedo-Dorantes ◽  
Israel Zamudio-Ramirez ◽  
Jonathan Cureno-Osornio ◽  
Roque Alfredo Osornio-Rios ◽  
Jose Alfonso Antonino-Daviu

Bearings are the elements that allow the rotatory movement in induction motors, and the fault occurrence in these elements is due to excessive working conditions. In induction motors, electrical erosion remains the most common phenomenon that damages bearings, leading to incipient faults that gradually increase to irreparable damages. Thus, condition monitoring strategies capable of assessing bearing fault severities are mandatory to overcome this critical issue. The contribution of this work lies in the proposal of a condition monitoring strategy that is focused on the analysis and identification of different fault severities of the outer race bearing fault in an induction motor. The proposed approach is supported by fusion information of different physical magnitudes and the use of Machine Learning and Artificial Intelligence. An important aspect of this proposal is the calculation of a hybrid-set of statistical features that are obtained to characterize vibration and stator current signals by its processing through domain analysis, i.e., time-domain and frequency-domain; also, the fusion of information of both signals by means of the Linear Discriminant Analysis is important due to the most discriminative and meaningful information is retained resulting in a high-performance condition characterization. Besides, a Neural Network-based classifier allows validating the effectiveness of fusion information from different physical magnitudes to face the diagnosis of multiple fault severities that appear in the bearing outer race. The method is validated under an experimental data set that includes information related to a healthy condition and five different severities that appear in the outer race of bearings.


Sign in / Sign up

Export Citation Format

Share Document