Quasi-Linear Viscoelastic Characterization of Soft Tissue-Mimicking Materials

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Hamed Helisaz ◽  
Mattia Bacca ◽  
Mu Chiao

Abstract We present a novel method based on the quasi-linear viscoelastic (QLV) theory to describe the time-dependent behavior of soft materials. Unlike previous methods for deriving QLV parameters, we characterize the elastic and viscous behavior of materials separately by using two different sets of experiments. To model the nonlinear elastic behavior, we fit the elastic stress response with a one-term Ogden model. Then, we model the relaxation behavior with a Prony series to compare the stress relaxation of the material at different timescales. This new method allows us to characterize materials with narrow confidence intervals (high accuracy), independently from the loading conditions. We validate our model using samples made of phantom materials that mimic normal and cancerous prostate tissues in terms of Young's modulus. Our model is shown to distinguish materials with similar elastic (viscous) properties but different viscous (elastic) properties. Drawing a precise distinction between the phantoms, this method could be useful for prostate cancer (PCa) diagnosis; but significant clinical studies will be needed in the future.

2016 ◽  
Vol 339 ◽  
pp. 1-11 ◽  
Author(s):  
Junfeng Liang ◽  
Huiyang Luo ◽  
Zachary Yokell ◽  
Don U. Nakmali ◽  
Rong Zhu Gan ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinu Paul

AbstractInternal energy and entropy contribution to the elasticity of carbon nanotube reinforced polydimethylsiloxane (PDMS) is evaluated using statistical theory of rubber elasticity. Stress–temperature measurements were performed and the data was used to calculate the internal energy contribution to elastic stress. Interesting aspects such as increase in energy and low entropy contribution to the elasticity of carbon nanotube reinforced PDMS is observed. This can be related t o the deformation behavior of the network chains of pristine elastomers and the directional reorientation of nanotube entanglements. While the entropy change is associated with reorientation or directional preference of the carbon nanotube entanglements, the internal energy change is associated with structural bending or stretching of the nanotubes. A reversible deformation of nanotube entanglements complements rubber like elasticity and the present study gives insights into the thermoelasticity of reinforced elastomers as well as the elastic behavior of carbon nanotube entanglements inside a polymer matrix.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


Author(s):  
Dan Pornhagen ◽  
Konrad Schneider ◽  
Markus Stommel

AbstractMost concepts to characterize crack propagation were developed for elastic materials. When applying these methods to elastomers, the question is how the inherent energy dissipation of the material affects the cracking behavior. This contribution presents a numerical analysis of crack growth in natural rubber taking energy dissipation due to the visco-elastic material behavior into account. For this purpose, experimental tests were first carried out under different load conditions to parameterize a Prony series as well as a Bergström–Boyce model with the results. The parameterized Prony series was then used to perform numerical investigations with respect to the cracking behavior. Using the FE-software system ANSYS and the concept of material forces, the influence and proportion of the dissipative components were discussed.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1807
Author(s):  
Rocío Guerle-Cavero ◽  
Blanca Lleal-Fontàs ◽  
Albert Balfagón-Costa

In 2023, new legislation will ban the use of animals in the cosmetic industry worldwide. This fact, together with ethical considerations concerning the use of animals or humans in scientific research, highlights the need to propose new alternatives for replacing their use. The aim of this study is to create a tri-layered chitosan membrane ionically crosslinked with sodium tripolyphosphate (TPP) in order to simulate the number of layers in human skin. The current article highlights the creation of a membrane where pores were induced by a novel method. Swelling index, pore creation, and mechanical property measurements revealed that the swelling index of chitosan membranes decreased and, their pore formation and elasticity increased with an increase in the Deacetylation Grade (DDA). Additionally, the results demonstrate that chitosan’s origin can influence the elastic modulus value and reproducibility, with higher values being obtained with seashell than snow crab or shrimp shells. Furthermore, the data show that the addition of each layer, until reaching three layers, increases the elastic modulus. Moreover, if layers are crosslinked, the elastic modulus increases to a much greater extent. The characterization of three kinds of chitosan membranes was performed to find the most suitable material for studying different human skin properties.


2006 ◽  
Vol 38 (7) ◽  
pp. 575-582
Author(s):  
O. M. Diaz ◽  
J. Prat ◽  
I. Tafur Monroy ◽  
H. de Waardt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document