PMD Characterization of a Dispersion Managed Link up to the Second-order with High Accuracy

2006 ◽  
Vol 38 (7) ◽  
pp. 575-582
Author(s):  
O. M. Diaz ◽  
J. Prat ◽  
I. Tafur Monroy ◽  
H. de Waardt
Keyword(s):  
Author(s):  
Yan Tian

AbstractIn this paper, we provide further illustrations of prolate interpolation and pseudospectral differentiation based on the barycentric perspectives. The convergence rates of the barycentric prolate interpolation and pseudospectral differentiation are derived. Furthermore, we propose the new preconditioner, which leads to the well-conditioned prolate collocation scheme. Numerical examples are included to show the high accuracy of the new method. We apply this approach to solve the second-order boundary value problem and Helmholtz problem.


2017 ◽  
Vol 25 (9) ◽  
pp. 10473
Author(s):  
Chalongrat Daengngam ◽  
Ishac Kandas ◽  
Islam Ashry ◽  
Jeong-Ah Lee ◽  
Anbo Wang ◽  
...  

Tetrahedron ◽  
2012 ◽  
Vol 68 (39) ◽  
pp. 8147-8155 ◽  
Author(s):  
M. Cidália R. Castro ◽  
M. Belsley ◽  
A. Maurício C. Fonseca ◽  
M. Manuela M. Raposo

2002 ◽  
Vol 39 (5) ◽  
pp. 749-764 ◽  
Author(s):  
Nicholas Culshaw ◽  
Peter Reynolds ◽  
Gavin Sinclair ◽  
Sandra Barr

We report amphibole and mica 40Ar/39Ar ages from the Makkovik Province. Amphibole ages from metamorphic rocks decrease towards the interior of the province, indicating a first-order pattern of monotonic cooling with progressive migration of the province into a more distal back-arc location. The amphibole data, in combination with muscovite ages, reveal a second-order pattern consisting of four stages corresponding to changing spatial and temporal configurations of plutonism and deformation. (1) The western Kaipokok domain cooled through muscovite closure by 1810 Ma, long after the cessation of arc magmatism. (2) The Kaipokok Bay shear zone, bounding the Kaipokok and Aillik domains, cooled through amphibole closure during 1805–1780 Ma, synchronous with emplacement of syn-tectonic granitoid plutons. (3) Between 1740 and 1700 Ma, greenschist-facies shearing occurred along the boundary between the Kaipokok domain and Nain Province synchronous with A-type plutonism and localized shearing in the western Kaipokok domain, cooling to muscovite closure temperatures in the Kaipokok Bay shear zone, and A-type plutonism and amphibole closure or resetting in the Aillik domain. (4) In the period 1650–1640 Ma, muscovite ages, an amphibole age from a shear zone, and resetting of plutonic amphibole indicate a thermal effect coinciding in part with Labradorian plutonism in the Aillik domain. Amphibole ages from dioritic sheets in the juvenile Aillik domain suggest emplacement between 1715 and 1685 Ma. Amphibole ages constrain crystallization of small mafic plutons in the Kaipokok domain (reworked Archean foreland) to be no younger than 1670–1660 Ma. These ages are the oldest yet obtained for Labradorian plutonism in the Makkovik Province.


2019 ◽  
Vol 3 (2) ◽  
pp. 363-383 ◽  
Author(s):  
Lisa Byrge ◽  
Daniel P. Kennedy

Connectome fingerprinting—a method that uses many thousands of functional connections in aggregate to identify individuals—holds promise for individualized neuroimaging. A better characterization of the features underlying successful fingerprinting performance—how many and which functional connections are necessary and/or sufficient for high accuracy—will further inform our understanding of uniqueness in brain functioning. Thus, here we examine the limits of high-accuracy individual identification from functional connectomes. Using ∼3,300 scans from the Human Connectome Project in a split-half design and an independent replication sample, we find that a remarkably small “thin slice” of the connectome—as few as 40 out of 64,620 functional connections—was sufficient to uniquely identify individuals. Yet, we find that no specific connections or even specific networks were necessary for identification, as even small random samples of the connectome were sufficient. These results have important conceptual and practical implications for the manifestation and detection of uniqueness in the brain.


Author(s):  
P. Corredera ◽  
M.L. Hernanz ◽  
M. Gonzalez-Herraez ◽  
S. Martin-Lopez ◽  
A. Carrasco-Sanz

Sign in / Sign up

Export Citation Format

Share Document